Publications
Rapid sequence identification of potential pathogens using techniques from sparse linear algebra
Summary
Summary
The decreasing costs and increasing speed and accuracy of DNA sample collection, preparation, and sequencing has rapidly produced an enormous volume of genetic data. However, fast and accurate analysis of the samples remains a bottleneck. Here we present D4RAGenS, a genetic sequence identification algorithm that exhibits the Big Data handling...
Using a big data database to identify pathogens in protein data space [e-print]
Summary
Summary
Current metagenomic analysis algorithms require significant computing resources, can report excessive false positives (type I errors), may miss organisms (type II errors/false negatives), or scale poorly on large datasets. This paper explores using big data database technologies to characterize very large metagenomic DNA sequences in protein space, with the ultimate...
Genetic sequence matching using D4M big data approaches
Summary
Summary
Recent technological advances in Next Generation Sequencing tools have led to increasing speeds of DNA sample collection, preparation, and sequencing. One instrument can produce over 600 Gb of genetic sequence data in a single run. This creates new opportunities to efficiently handle the increasing workload. We propose a new method...