Publications

Refine Results

(Filters Applied) Clear All

Prototype and analytics for discovery and exploitation of threat networks on social media

Published in:
2019 European Intelligence and Security Informatics Conference, EISIC, 26-27 November 2019.

Summary

Identifying and profiling threat actors are high priority tasks for a number of governmental organizations. These threat actors may operate actively, using the Internet to promote propaganda, recruit new members, or exert command and control over their networks. Alternatively, threat actors may operate passively, demonstrating operational security awareness online while using their Internet presence to gather information they need to pose an offline physical threat. This paper presents a flexible new prototype system that allows analysts to automatically detect, monitor and characterize threat actors and their networks using publicly available information. The proposed prototype system fills a need in the intelligence community for a capability to automate manual construction and analysis of online threat networks. Leveraging graph sampling approaches, we perform targeted data collection of extremist social media accounts and their networks. We design and incorporate new algorithms for role classification and radicalization detection using insights from social science literature of extremism. Additionally, we develop and implement analytics to facilitate monitoring the dynamic social networks over time. The prototype also incorporates several novel machine learning algorithms for threat actor discovery and characterization, such as classification of user posts into discourse categories, user post summaries and gender prediction.
READ LESS

Summary

Identifying and profiling threat actors are high priority tasks for a number of governmental organizations. These threat actors may operate actively, using the Internet to promote propaganda, recruit new members, or exert command and control over their networks. Alternatively, threat actors may operate passively, demonstrating operational security awareness online while...

READ MORE

XLab: early indications & warning from open source data with application to biological threat

Published in:
Proc. 51st Hawaii Int. Conf. on System Sciences, HICSS 2018, pp. 944-953.

Summary

XLab is an early warning system that addresses a broad range of national security threats using a flexible, rapidly reconfigurable architecture. XLab enables intelligence analysts to visualize, explore, and query a knowledge base constructed from multiple data sources, guided by subject matter expertise codified in threat model graphs. This paper describes a novel system prototype that addresses threats arising from biological weapons of mass destruction. The prototype applies knowledge extraction analytics—including link estimation, entity disambiguation, and event detection—to build a knowledge base of 40 million entities and 140 million relationships from open sources. Exact and inexact subgraph matching analytics enable analysts to search the knowledge base for instances of modeled threats. The paper introduces new methods for inexact matching that accommodate threat models with temporal and geospatial patterns. System performance is demonstrated using several simplified threat models and an embedded scenario.
READ LESS

Summary

XLab is an early warning system that addresses a broad range of national security threats using a flexible, rapidly reconfigurable architecture. XLab enables intelligence analysts to visualize, explore, and query a knowledge base constructed from multiple data sources, guided by subject matter expertise codified in threat model graphs. This paper...

READ MORE

Showing Results

1-2 of 2