Publications

Refine Results

(Filters Applied) Clear All

LLTools: machine learning for human language processing

Summary

Machine learning methods in Human Language Technology have reached a stage of maturity where widespread use is both possible and desirable. The MIT Lincoln Laboratory LLTools software suite provides a step towards this goal by providing a set of easily accessible frameworks for incorporating speech, text, and entity resolution components into larger applications. For the speech processing component, the pySLGR (Speaker, Language, Gender Recognition) tool provides signal processing, standard feature analysis, speech utterance embedding, and machine learning modeling methods in Python. The text processing component in LLTools extracts semantically meaningful insights from unstructured data via entity extraction, topic modeling, and document classification. The entity resolution component in LLTools provides approximate string matching, author recognition and graph-based methods for identifying and linking different instances of the same real-world entity. We show through two applications that LLTools can be used to rapidly create and train research prototypes for human language processing.
READ LESS

Summary

Machine learning methods in Human Language Technology have reached a stage of maturity where widespread use is both possible and desirable. The MIT Lincoln Laboratory LLTools software suite provides a step towards this goal by providing a set of easily accessible frameworks for incorporating speech, text, and entity resolution components...

READ MORE

Predicting and analyzing factors in patent litigation

Published in:
30th Conf. on Neural Information Processing System, NIPS 2016, 5-10 December 2016.

Summary

Patent litigation is an expensive and time-consuming process. To minimize its impact on the participants in the patent lifecycle, automatic determination of litigation potential is a compelling machine learning application. In this paper, we consider preliminary methods for the prediction of a patent being involved in litigation using metadata, content, and graph features. Metadata features are top-level easily-extractable features, i.e., assignee, number of claims, etc. The content feature performs lexical analysis of the claims associated to a patent. Graph features use relational learning to summarize patent references. We apply our methods on US patents using a labeled data set. Prior work has focused on metadata-only features, but we show that both graph and content features have significant predictive capability. Additionally, fusing all features results in improved performance. We also perform a preliminary examination of some of the qualitative factors that may have significant importance in patent litigation.
READ LESS

Summary

Patent litigation is an expensive and time-consuming process. To minimize its impact on the participants in the patent lifecycle, automatic determination of litigation potential is a compelling machine learning application. In this paper, we consider preliminary methods for the prediction of a patent being involved in litigation using metadata, content...

READ MORE

Showing Results

1-2 of 2