Publications
A hardware root-of-trust design for low-power SoC edge devices
Summary
Summary
In this work, we introduce a hardware root-of-trust architecture for low-power edge devices. An accelerator-based SoC design that includes the hardware root-of-trust architecture is developed. An example application for the device is presented. We examine attacks based on physical access given the significant threat they pose to unattended edge systems...
Fabrication security and trust of domain-specific ASIC processors
Summary
Summary
Application specific integrated circuits (ASICs) are commonly used to implement high-performance signal-processing systems for high-volume applications, but their high development costs and inflexible nature make ASICs inappropriate for algorithm development and low-volume DoD applications. In addition, the intellectual property (IP) embedded in the ASIC is at risk when fabricated in...
Low power sparse polynomial equalizer (SPEQ) for nonlinear digital compensation of an active anti-alias filter
Summary
Summary
We present an efficient architecture to perform on-chip nonlinear equalization of an anti-alias RF filter. The sparse polynomial equalizer (SPEq) achieves substantial power savings through co-design of the equalizer and the filter, which allows including the right number of processing elements, filter taps, and bits to maximize performance and minimize...
On-chip nonlinear digital compensation for RF receiver
Summary
Summary
A system-on-chip (SOC) implementation is an attractive solution for size, weight and power (SWaP) restricted applications, such as mobile devices and UAVs. This is partly because the individual parts of the system can be designed for a specific application rather than for a broad range of them, like commercial parts...