Publications

Refine Results

(Filters Applied) Clear All

Creating a cyber moving target for critical infrastructure applications

Published in:
5th IFIP Int. Conf. on Critical Infrastructure Protection, ICCIP 2011, 19-21 March 2011.

Summary

Despite the significant amount of effort that often goes into securing critical infrastructure assets, many systems remain vulnerable to advanced, targeted cyber attacks. This paper describes the design and implementation of the Trusted Dynamic Logical Heterogeneity System (TALENT), a framework for live-migrating critical infrastructure applications across heterogeneous platforms. TALENT permits a running critical application to change its hardware platform and operating system, thus providing cyber survivability through platform diversity. TALENT uses containers (operating-system-level virtualization) and a portable checkpoint compiler to create a virtual execution environment and to migrate a running application across different platforms while preserving the state of the application (execution state, open files and network connections). TALENT is designed to support general applications written in the C programming language. By changing the platform on-the-fly, TALENT creates a cyber moving target and significantly raises the bar for a successful attack against a critical application. Experiments demonstrate that a complete migration can be completed within about one second.
READ LESS

Summary

Despite the significant amount of effort that often goes into securing critical infrastructure assets, many systems remain vulnerable to advanced, targeted cyber attacks. This paper describes the design and implementation of the Trusted Dynamic Logical Heterogeneity System (TALENT), a framework for live-migrating critical infrastructure applications across heterogeneous platforms. TALENT permits...

READ MORE

TALENT: dynamic platform heterogeneity for cyber survivability of mission critical applications

Published in:
Proc. Secure and Resilient Cyber Architecture Conf., SRCA, 29 October 2010.

Summary

Despite the significant amount of effort that often goes into securing mission critical systems, many remain vulnerable to advanced, targeted cyber attacks. In this work, we design and implement TALENT (Trusted dynAmic Logical hEterogeNeity sysTem), a framework to live-migrate mission critical applications across heterogeneous platforms. TALENT enables us to change the hardware and operating system on top of which a sensitive application is running, thus providing cyber survivability through platform diversity. Using containers (a.k.a. operating system-level virtualization) and a portable checkpoint compiler, TALENT creates a virtual execution environment and migrates a running application across different platforms while preserving the state of the application. The state, here, refers to the execution state of the process as well as its open files and sockets. TALENT is designed to support a general C application. By changing the platform on-the-fly, TALENT creates a moving target against cyber attacks and significantly raises the bar for a successful attack against a critical application. Our measurements show that a full migration can be completed in about one second.
READ LESS

Summary

Despite the significant amount of effort that often goes into securing mission critical systems, many remain vulnerable to advanced, targeted cyber attacks. In this work, we design and implement TALENT (Trusted dynAmic Logical hEterogeNeity sysTem), a framework to live-migrate mission critical applications across heterogeneous platforms. TALENT enables us to change...

READ MORE

Showing Results

1-2 of 2