Publications
Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study
Summary
Summary
Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily...
Gait instability and estimated core temperature predict exertional heat stroke
Summary
Summary
Objective Exertional heat stroke (EHS), characterised by a high core body temperature (Tcr) and central nervous system (CNS) dysfunction, is a concern for athletes, workers and military personnel who must train and perform in hot environments. The objective of this study was to determine whether algorithms that estimate Tcr from...
AI-enabled, ultrasound-guided handheld robotic device for femoral vascular access
Summary
Summary
Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions...
Detecting Parkinson's disease from wrist-worn accelerometry in the U.K. Biobank
Summary
Summary
Parkinson's disease (PD) is a chronic movement disorder that produces a variety of characteristic movement abnormalities. The ubiquity of wrist-worn accelerometry suggests a possible sensor modality for early detection of PD symptoms and subsequent tracking of PD symptom severity. As an initial proof of concept for this technological approach, we...
Ultrasound and artificial intelligence
Summary
Summary
Compared to other major medical imaging modalities such as X-ray, computed tomography (CT), and magnetic resonance imaging, medical ultrasound (US) has unique attributes that make it the preferred modality for many clinical applications. In particular, US is nonionizing, portable, and provides real-time imaging, with adequate spatial and depth resolution to...
Image processing pipeline for liver fibrosis classification using ultrasound shear wave elastography
Summary
Summary
The purpose of this study was to develop an automated method for classifying liver fibrosis stage >=F2 based on ultrasound shear wave elastography (SWE) and to assess the system's performance in comparison with a reference manual approach. The reference approach consists of manually selecting a region of interest from each...
Estimating sedentary breathing rate from chest-worn accelerometry from free-living data
Summary
Summary
Breathing rate was estimated from chest-worn accelerometry collected from 1,522 servicemembers during training by a wearable physiological monitor. A total of 29,189 hours of training and sleep data were analyzed. The primary purpose of the monitor was to assess thermal-work strain and avoid heat injuries. The monitor design was thus...
Integrative sensor networks, informatics, and modeling for precision and preventative medicine
Summary
Summary
The topics of integrative sensor networks, informatics and modeling bring together the tightly coupled and rapidly developing fields of biomedical and health informatics and body sensor networks. Biomedical and health informatics encompasses methods to extract and communicate information from data in order to impact health, healthcare, life sciences and biomedicine...
Detecting intracranial hemorrhage with deep learning
Summary
Summary
Initial results are reported on automated detection of intracranial hemorrhage from CT, which would be valuable in a computer-aided diagnosis system to help the radiologist detect subtle hemorrhages. Previous work has taken a classic approach involving multiple steps of alignment, image processing, image corrections, handcrafted feature extraction, and classification. Our...
Machine learning for medical ultrasound: status, methods, and future opportunities
Summary
Summary
Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited...