Publications

Refine Results

(Filters Applied) Clear All

Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study

Summary

Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables.
READ LESS

Summary

Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily...

READ MORE

Gait instability and estimated core temperature predict exertional heat stroke

Summary

Objective Exertional heat stroke (EHS), characterised by a high core body temperature (Tcr) and central nervous system (CNS) dysfunction, is a concern for athletes, workers and military personnel who must train and perform in hot environments. The objective of this study was to determine whether algorithms that estimate Tcr from heart rate and gait instability from a trunk-worn sensor system can forward predict EHS onset. Methods Heart rate and three-axis accelerometry data were collected from chest-worn sensors from 1806 US military personnel participating in timed 4/5-mile runs, and loaded marches of 7 and 12 miles; in total, 3422 high EHS-risk training datasets were available for analysis. Six soldiers were diagnosed with heat stroke and all had rectal temperatures of >41°C when first measured and were exhibiting CNS dysfunction. Estimated core temperature (ECTemp) was computed from sequential measures of heart rate. Gait instability was computed from three-axis accelerometry using features of pattern dispersion and autocorrelation. Results The six soldiers who experienced heat stroke were among the hottest compared with the other soldiers in the respective training events with ECTemps ranging from 39.2°C to 40.8°C. Combining ECTemp and gait instability measures successfully identified all six EHS casualties at least 3.5 min in advance of collapse while falsely identifying 6.1% (209 total false positives) examples where exertional heat illness symptoms were neither observed nor reported. No false-negative cases were noted. Conclusion The combination of two algorithms that estimate Tcr and ataxic gate appears promising for real-time alerting of impending EHS.
READ LESS

Summary

Objective Exertional heat stroke (EHS), characterised by a high core body temperature (Tcr) and central nervous system (CNS) dysfunction, is a concern for athletes, workers and military personnel who must train and perform in hot environments. The objective of this study was to determine whether algorithms that estimate Tcr from...

READ MORE

AI-enabled, ultrasound-guided handheld robotic device for femoral vascular access

Summary

Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions. However, central access is normally performed by highly experienced critical care physicians in a hospital setting. We developed a handheld AI-enabled interventional device, AI-GUIDE (Artificial Intelligence Guided Ultrasound Interventional Device), capable of directing users with no ultrasound or interventional expertise to catheterize a deep blood vessel, with an initial focus on the femoral vein. AI-GUIDE integrates with widely available commercial portable ultrasound systems and guides a user in ultrasound probe localization, venous puncture-point localization, and needle insertion. The system performs vascular puncture robotically and incorporates a preloaded guidewire to facilitate the Seldinger technique of catheter insertion. Results from tissue-mimicking phantom and porcine studies under normotensive and hypotensive conditions provide evidence of the technique's robustness, with key performance metrics in a live porcine model including: a mean time to acquire femoral vein insertion point of 53 plus or minus 36 s (5 users with varying experience, in 20 trials), a total time to insert catheter of 80 plus or minus 30 s (1 user, in 6 trials), and a mean number of 1.1 (normotensive, 39 trials) and 1.3 (hypotensive, 55 trials) needle insertion attempts (1 user). These performance metrics in a porcine model are consistent with those for experienced medical providers performing central vascular access on humans in a hospital.
READ LESS

Summary

Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions...

READ MORE

Detecting Parkinson's disease from wrist-worn accelerometry in the U.K. Biobank

Published in:
Sensors, Vol. 21, No. 6, 2021, Art. No. 2047.

Summary

Parkinson's disease (PD) is a chronic movement disorder that produces a variety of characteristic movement abnormalities. The ubiquity of wrist-worn accelerometry suggests a possible sensor modality for early detection of PD symptoms and subsequent tracking of PD symptom severity. As an initial proof of concept for this technological approach, we analyzed the U.K. Biobank data set, consisting of one week of wrist-worn accelerometry from a population with a PD primary diagnosis and an age-matched healthy control population. Measures of movement dispersion were extracted from automatically segmented gait data, and measures of movement dimensionality were extracted from automatically segmented low-movement data. Using machine learning classifiers applied to one week of data, PD was detected with an area under the curve (AUC) of 0.69 on gait data, AUC = 0.84 on low-movement data, and AUC = 0.85 on a fusion of both activities. It was also found that classification accuracy steadily improved across the one-week data collection, suggesting that higher accuracy could be achievable from a longer data collection. These results suggest the viability of using a low-cost and easy-to-use activity sensor for detecting movement abnormalities due to PD and motivate further research on early PD detection and tracking of PD symptom severity.
READ LESS

Summary

Parkinson's disease (PD) is a chronic movement disorder that produces a variety of characteristic movement abnormalities. The ubiquity of wrist-worn accelerometry suggests a possible sensor modality for early detection of PD symptoms and subsequent tracking of PD symptom severity. As an initial proof of concept for this technological approach, we...

READ MORE

Ultrasound and artificial intelligence

Published in:
Chapter 8 in Machine Learning in Cardiovascular Medicine, 2020, pp. 177-210.

Summary

Compared to other major medical imaging modalities such as X-ray, computed tomography (CT), and magnetic resonance imaging, medical ultrasound (US) has unique attributes that make it the preferred modality for many clinical applications. In particular, US is nonionizing, portable, and provides real-time imaging, with adequate spatial and depth resolution to visualize tissue dynamics. The ability to measure Doppler information is also important, particularly for measuring blood flows. The small size of US transducers is a key attribute for intravascular applications. In addition, accessibility has been increased with the use of portable US, which continues to move toward a smaller footprint and lower cost. Nowadays, some US probes can even be directly connected to a phone or tablet. On the other hand, US also has unique challenges, particularly in that image quality is highly dependent on the operator’s skill in acquiring images based on the proper position, orientation, and probe pressure. Additional challenges that further require operator skill include the presence of noise, artifacts, limited field of view, difficulty in imaging structures behind bone and air, and device variability across manufacturers. Sonographers become highly proficient through extensive training and long experience, but high intra- and interobserver variability remains. This skill dependence has limited the wider use of US by healthcare providers who are not US imaging specialists. Recent advances in machine learning (ML) have been increasingly applied to medical US (Brattain, Telfer, Dhyani, Grajo, & Samir, 2018), with a goal of reducing intra- and interobserver variability as well as interpretation time. As progress toward these goals is made, US use by nonspecialists is expected to proliferate, including nurses at the bedside or medics in the field. The acceleration in ML applications for medical US can be seen from the increasing number of publications (Fig. 8.1) and Food and Drug Administration (FDA) approvals (Table 8.1) in the past few years. Fig. 8.1 shows that cardiovascular applications (spanning the heart, brain and vessels) have received the most attention, compared to other organs. Table 8.1 shows that pace of US FDA-cleared artificial intelligence (AI) products that combine AI and ultrasound is accelerating. Of note, many of the products have been approved over the last couple of years. Companies such as Butterfly Network (Guilford, CT) have also demonstrated AI-driven applications for portable ultrasound and more FDA clearances are expected to be published. The goals of this chapter are to highlight the recent progress, as well as the current challenges and future opportunities. Specifically, this chapter addresses topics such as the following: (1) what is the current state of machine learning for medical US application, both in research and commercially; (2) what applications are receiving the most attention and have performance improvements been quantified; (3) how do ML solutions fit in an overall workflow; and (4) what open-source datasets are available for the broader community to contribute to progress in this field. The focus is on cardiovascular applications (Section Cardiovascular/echocardiography), but common themes and differences for other applications for medical US are also summarized (Section Breast, liver, and thyroid ultrasound). A discussion is offered in Discussion and outlook section.
READ LESS

Summary

Compared to other major medical imaging modalities such as X-ray, computed tomography (CT), and magnetic resonance imaging, medical ultrasound (US) has unique attributes that make it the preferred modality for many clinical applications. In particular, US is nonionizing, portable, and provides real-time imaging, with adequate spatial and depth resolution to...

READ MORE

Image processing pipeline for liver fibrosis classification using ultrasound shear wave elastography

Published in:
Ultrasound in Med. & Biol., Vol. 46, No. 10, October 2020, pp. 2667-2676.

Summary

The purpose of this study was to develop an automated method for classifying liver fibrosis stage >=F2 based on ultrasound shear wave elastography (SWE) and to assess the system's performance in comparison with a reference manual approach. The reference approach consists of manually selecting a region of interest from each of eight or more SWE images, computing the mean tissue stiffness within each of the regions of interest and computing a resulting stiffness value as the median of the means. The 527-subject database consisted of 5526 SWE images and pathologist-scored biopsies, with data collected from a single system at a single site. The automated method integrates three modules that assess SWE image quality, select a region of interest from each SWE measurement and perform machine learning-based, multi-image SWE classification for fibrosis stage >=F2. Several classification methods were developed and tested using fivefold cross-validation with training, validation and test sets partitioned by subject. Performance metrics were area under receiver operating characteristic curve (AUROC), specificity at 95% sensitivity and number of SWE images required. The final automated method yielded an AUROC of 0.93 (95% confidence interval: 0.90-0.94) versus 0.69 (95% confidence interval: 0.65-0.72) for the reference method, 71% specificity with 95% sensitivity versus 5% and four images per decision versus eight or more. In conclusion, the automated method reported in this study significantly improved the accuracy for >=F2 classification of SWE measurements as well as reduced the number of measurements needed, which has the potential to reduce clinical workflow.
READ LESS

Summary

The purpose of this study was to develop an automated method for classifying liver fibrosis stage >=F2 based on ultrasound shear wave elastography (SWE) and to assess the system's performance in comparison with a reference manual approach. The reference approach consists of manually selecting a region of interest from each...

READ MORE

Estimating sedentary breathing rate from chest-worn accelerometry from free-living data

Published in:
42nd Annual Intl. Conf. IEEE Engineering in Medicine and Biology Society, EMBC, 20-24 July 2020.

Summary

Breathing rate was estimated from chest-worn accelerometry collected from 1,522 servicemembers during training by a wearable physiological monitor. A total of 29,189 hours of training and sleep data were analyzed. The primary purpose of the monitor was to assess thermal-work strain and avoid heat injuries. The monitor design was thus not optimized to estimate breathing rate. Since breathing rate cannot be accurately estimated during periods of high activity, a qualifier was applied to identify sedentary time periods, totaling 8,867 hours. Breathing rate was estimated for a total of 4,179 hours, or 14% of the total collection and 47% of the sedentary total, primarily during periods of sleep. The breathing rate estimation method was compared to an FDA 510(K)-cleared criterion breathing rate sensor (Zephyr, Annapolis MD, USA) in a controlled laboratory experiment, which showed good agreement between the two techniques. Contributions of this paper are to: 1) provide the first analysis of accelerometry-derived breathing rate on free-living data including periods of high activity as well as sleep, along with a qualifier that effectively identifies sedentary periods appropriate for estimating breathing rate; 2) test breathing rate estimation on a data set with a total duration that is more than 60 times longer than that of the largest previously reported study, 3) test breathing rate estimation on data from a physiological monitor that has not been expressly designed for that purpose.
READ LESS

Summary

Breathing rate was estimated from chest-worn accelerometry collected from 1,522 servicemembers during training by a wearable physiological monitor. A total of 29,189 hours of training and sleep data were analyzed. The primary purpose of the monitor was to assess thermal-work strain and avoid heat injuries. The monitor design was thus...

READ MORE

Integrative sensor networks, informatics, and modeling for precision and preventative medicine

Published in:
IEEE J. Biomed. Health, Vol. 24, No. 7, July 2020, pp. 1858-1859.

Summary

The topics of integrative sensor networks, informatics and modeling bring together the tightly coupled and rapidly developing fields of biomedical and health informatics and body sensor networks. Biomedical and health informatics encompasses methods to extract and communicate information from data in order to impact health, healthcare, life sciences and biomedicine. Body sensor networks provide one means to measure the needed data, through continuous monitoring in both clinical and free-living environments. Developments in these areas were highlighted at two co-located conferences: the 2019 IEEE-EMBS International Conferences on Biomedical and Health Informatics (BHI'19) and Wearable and Implantable Body Sensor Networks (BSN'19). BHI and BSN are long-standing IEEE EMBS conferences that provide a forum for researchers and leaders from academia, government and industry to share technical advances and new initiatives in these important areas. Through an open call for this special issue, eleven papers have been included for publication. The majority were presented in an initial form at the 2018 or 2019 BHI and BSN conferences. Nine of the papers were selected through a rigorous peer review. In addition, two keynote speakers from BHI'19 and BSN'19 have provided short position papers.
READ LESS

Summary

The topics of integrative sensor networks, informatics and modeling bring together the tightly coupled and rapidly developing fields of biomedical and health informatics and body sensor networks. Biomedical and health informatics encompasses methods to extract and communicate information from data in order to impact health, healthcare, life sciences and biomedicine...

READ MORE

Detecting intracranial hemorrhage with deep learning

Published in:
40th Int. Conf. of the IEEE Engineering in Medicine and Biology Society, EMBC, 17-21 July 2018.

Summary

Initial results are reported on automated detection of intracranial hemorrhage from CT, which would be valuable in a computer-aided diagnosis system to help the radiologist detect subtle hemorrhages. Previous work has taken a classic approach involving multiple steps of alignment, image processing, image corrections, handcrafted feature extraction, and classification. Our current work instead uses a deep convolutional neural network to simultaneously learn features and classification, eliminating the multiple hand-tuned steps. Performance is improved by computing the mean output for rotations of the input image. Postprocessing is additionally applied to the CNN output to significantly improve specificity. The database consists of 134 CT cases (4,300 images), divided into 60, 5, and 69 cases for training, validation, and test. Each case typically includes multiple hemorrhages. Performance on the test set was 81% sensitivity per lesion (34/42 lesions) and 98% specificity per case (45/46 cases). The sensitivity is comparable to previous results (on different datasets), but with a significantly higher specificity. In addition, insights are shared to improve performance as the database is expanded.
READ LESS

Summary

Initial results are reported on automated detection of intracranial hemorrhage from CT, which would be valuable in a computer-aided diagnosis system to help the radiologist detect subtle hemorrhages. Previous work has taken a classic approach involving multiple steps of alignment, image processing, image corrections, handcrafted feature extraction, and classification. Our...

READ MORE

Machine learning for medical ultrasound: status, methods, and future opportunities

Published in:
Abdom. Radiol., 2018, doi: 10.1007/s00261-018-1517-0.

Summary

Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.
READ LESS

Summary

Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited...

READ MORE