Investigation of the relationship of vocal, eye-tracking, and fMRI ROI time-series measures with preclinical mild traumatic brain injury
Summary
In this work, we are examining correlations between vocal articulatory features, ocular smooth pursuit measures, and features from the fMRI BOLD response in regions of interest (ROI) time series in a high school athlete population susceptible to repeated head impact within a sports season. Initial results have indicated relationships between vocal features and brain ROIs that may show which components of the neural speech networks effected are effected by preclinical mild traumatic brain injury (mTBI). The data used for this study was collected by Purdue University on 32 high school athletes over the entirety of a sports season (Helfer, et al., 2014), and includes fMRI measurements made pre-season, in-season, and postseason. The athletes are 25 male football players and 7 female soccer players. The Immediate Post-Concussion Assessment and Cognitive Testing suite (ImPACT) was used as a means of assessing cognitive performance (Broglio, Ferrara, Macciocchi, Baumgartner, & Elliott, 2007). The test is made up of six sections, which measure verbal memory, visual memory, visual motor speed, reaction time, impulse control, and a total symptom composite. Using each test, a threshold is set for a change in cognitive performance. The threshold for each test is defined as a decline from baseline that exceeds one standard deviation, where the standard deviation is computed over the change from baseline across all subjects’ test scores. Speech features were extracted from audio recordings of the Grandfather Passage, which provides a standardized and phonetically balanced sample of speech. Oculomotor testing included two experimental conditions. In the smooth pursuit condition, a single target moving circularly, at constant speed. In the saccade condition, a target was jumped between one of three location along the horizontal midline of the screen. In both trial types, subjects visually tracked the targets during the trials, which lasted for one minute. The fMRI features are derived from the bold time-series data from resting state fMRI scans of the subjects. The pre-processing of the resting state fMRI and accompanying structural MRI data (for Atlas registration) was performed with the toolkit CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012). Functional connectivity was generated using cortical and sub-cortical atlas registrations. This investigation will explores correlations between these three modalities and a cognitive performance assessment.