Summary
BACKGROUND: In-field triage tools for trauma patients are limited by availability of information, linear risk classification, and a lack of confidence reporting. We therefore set out to develop and test a machine learning algorithm that can overcome these limitations by accurately and confidently making predictions to support in-field triage in the first hours after traumatic injury. METHODS: Using an American College of Surgeons Trauma Quality Improvement Program-derived database of truncal and junctional gunshot wound (GSW) patients (aged 1~0 years), we trained an information-aware Dirichlet deep neural network (field artificial intelligence triage). Using supervised training, field artificial intelligence triage was trained to predict shock and the need for major hemorrhage control procedures or early massive transfusion (MT) using GSW anatomical locations, vital signs, and patient information available in the field. In parallel, a confidence model was developed to predict the true-dass probability ( scale of 0-1 ), indicating the likelihood that the prediction made was correct, based on the values and interconnectivity of input variables.