Object detection by two-dimensional linear prediction
Summary
An important component of any automated image analysis system is the detection and classification of objects. In this report, we consider the first of these problems where the specific goal is to detect anomalous areas (e.g., man-made objects) in textured backgrounds such as trees, grass, and fields of aerial photographs. Our detection algorithm relies on a significance test which adapts itself to the changing background in such a way that a constant false alarm rate is maintained. Furthermore, this test has a potentially practical implementation since it can be expressed in terms of the residuals of an adaptive two-dimensional linear predictor. The algorithm is demonstrated with both synthetic and realworld images.