Geographic source estimation using airborne plant environmental DNA in dust
May 14, 2021
Journal Article
Author:
Published in:
Sci. Rep., Vol. 11, No. 1, 10 August 2021, 16238.
Summary
Information obtained from the analysis of dust, particularly biological particles such as pollen, plant parts, and fungal spores, has great utility in forensic geolocation. As an alternative to manual microscopic analysis, we developed a pipeline that utilizes the environmental DNA (eDNA) from plants in dust samples to estimate previous sample location(s). The species of plant-derived eDNA within dust samples were identified using metabarcoding and their geographic distributions were then derived from occurrence records in the USGS Biodiversity in Service of Our Nation (BISON) database. The distributions for all plant species identified in a sample were used to generate a probabilistic estimate of the sample source. With settled dust collected at four U.S. sites over a 15-month period, we demonstrated positive regional geolocation (within 600 km2 of the collection point) with 47.6% (20 of 42) of the samples analyzed. Attribution accuracy and resolution was dependent on the number of plant species identified in a dust sample, which was greatly affected by the season of collection. In dust samples that yielded a minimum of 20 identified plant species, positive regional attribution improved to 66.7% (16 of 24 samples). Using dust samples collected from 31 different U.S. sites, trace plant eDNA provided relevant regional attribution information on provenance in 32.2%. This demonstrated that analysis of plant eDNA in dust can provide an accurate estimate regional provenance within the U.S., and relevant forensic information, for a substantial fraction of samples analyzed.