Summary
User space memory randomization techniques are an emerging field of cyber defensive technology which attempts to protect computing systems by randomizing the layout of memory. Quantitative metrics are needed to evaluate their effectiveness at securing systems against modern adversaries and to compare between randomization technologies. We introduce Effective Entropy, a measure of entropy in user space memory which quantitatively considers an adversary's ability to leverage low entropy regions of memory via absolute and dynamic intersection connections. Effective Entropy is indicative of adversary workload and enables comparison between different randomization techniques. Using Effective Entropy, we present a comparison of static Address Space Layout Randomization (ASLR), Position Independent Executable (PIE) ASLR, and a theoretical fine grain randomization technique.