Summary
Non-compressible internal hemorrhage (NCIH) is the most common cause of death in acute non-penetrating trauma. NCIH management requires accurate hematoma localization and evaluation for ongoing bleeding for risk stratification. The current standard point-of-care diagnostic tool, the focused assessment with sonography for trauma (FAST), detects free fluid in body cavities with conventional B-mode imaging. The FAST does not assess whether bleeding is ongoing, at which location(s), and to what extent. Here, we propose contrast-enhanced ultrasound (CEUS) techniques to better identify, localize, and quantify hemorrhage. We designed and fabricated a custom hemorrhage-mimicking phantom, comprising a perforated vessel and cavity to simulate active bleeding. Lumason contrast agents (UCAs) were introduced at clinically relevant concentrations (3.5×108 bubbles/ml). Conventional and contrast pulse sequence images were captured, and post-processed with bubble localization techniques (SVD clutter filter and bubble localization). The results showed contrast pulse sequences enabled a 2.2-fold increase in the number of microbubbles detected compared with conventional CEUS imaging, over a range of flow rates, concentrations, and localization processing parameters. Additionally, particle velocimetry enabled mapping of dynamic flow within the simulated bleeding site. Our findings indicate that CEUS combined with advanced image processing may enhance visualization of hemodynamics and improve non-invasive, real-time detection of active bleeding.