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Abstract

Computer programmers use custom memory allocators as an alternative to built-
in or general-purpose memory allocators with the intent to improve performance
and minimize human error. However, it is difficult to achieve both memory safety
and performance gains on custom memory allocators. In this thesis, we study the
relationship between memory safety and custom allocators. We analyze three popular
servers, Apache, Nginx, and Appweb, and show that while the performance benefits
might exist in the unprotected version of the server, as soon as partial or full memory
safety is enforced, the picture becomes much more complex. Based on the target,
using a custom memory allocator might be faster, about the same, or slower than the
system memory allocator. Another caveat is that custom memory allocation can only
be protected partially (at the allocation granularity) without manual modification.
In addition, custom memory allocators may also introduce additional vulnerabilities
to an application (e.g., OpenSSL Heartbleed). We thus conclude that using custom
memory allocators is very nuanced, and that the challenges they pose may outweigh
the small performance gains in the unprotected mode in many cases. Our findings
suggest that developers must carefully consider the trade-offs and caveats of using a
custom memory allocator before deploying it in their project.
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Chapter 1

Introduction

By definition, memory corruption occurs when memory is modified illegally. The

memory contract between the program and operating system is violated, and as a

result, malicious actions may occur. We use the term “may” because an instance of

memory corruption does not necessarily lead to a security exploit.

First, we must consider whether the corrupted memory can affect the programs

intended behavior. There are instances in which the corrupted memory is either

contained within a section of the program that does not impact the program in a

significant way, such as the cases in which the overwritten memory is no longer used

by the program or the overwritten memory gets written over by the correct value

before the program uses the memory. For a program to run correctly, only a subset of

values in the data execution path must be correct. These bits are referred to as Ar-

chitecturally Correct Execution (ACE). The rest are un-Ace. In a Spec2K benchmark

test, it was shown that 46% of bits in a program on average are ACE [1]. Therefore,

it is possible for a memory corruption to be benign.

On the other hand, memory corruption could also be malicious and result in a

successful exploit. The majority of memory corruption bugs are caused by developer

error and the use of a memory unsafe programming language. Consider code example

1.1, which is written in C. This example was taken from Smashing the Stack for Fun

and Profit [2], which demonstrates how to spawn a shell from an unsuspecting user's

computer by taking advantage of a simple buffer overflow.
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1 void copyArray (char bad [ 1 0 0 ] )
2 {
3 char buf [ 1 0 ] ;
4 s t r cpy ( buf , bad ) ;
5 }

Code Listing 1.1: Buffer Overflow Example

copyArray is a function that takes in one parameter called bad, which is an

array of type char and of size 100. bad acts as a string. copyArray copies the data

located at the address of bad into the address at buf. buf is a char array of size 10

and is significantly smaller in size than bad. The function, strcpy, does not check to

see if buf has enough space to copy all of the elements in bad. With no space to write

all the characters from bad into the buf array, the program writes to the memory

after buf in the stack.

At this point, unexpected behavior may occur. The memory contract between

the operating system and the program when buf was allocated was that buf would

only consist of 10 chars. The operating system only gave buf enough space for 10

characters, so the memory that gets overwritten by the other 90 characters after the

buf array does not belong to buf. buf's data could even be overwritten at a later

point, as buf has no control over what happens to memory that was not given to it.

If the memory overwritten is ACE and is later used by the program, then the attacker

may be able to trick the program into executing malicious code through something

like return-oriented programming (which we will expand upon at a later section) [17].

This allows an attacker to remotely hijack the program execution and take malicious

actions afterwards.

The implied solution to preventing memory corruption is to use memory safe

languages like Rust, Go, or Java. If we had used Java to write copyArray instead,

then we would have received a out-of-bounds error when attempting to copy the con-

tents of bad over to buf. However, unsafe low-level programming languages such as

C and C++ remain popular and are still the preferred programming languages in

many development environments today.

Memory unsafe languages require the developer to manage memory themselves.
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By doing so, the developer gains significant freedom and in many cases, can increase

performance by optimizing memory management for their specific application. Pro-

gramming languages that perform automatic memory management such as Java are

often frowned upon when discussing performance and optimizations. As such, the

ability to manage memory becomes a double-edged sword.

Even though numerous safeguards have been developed over the years to ensure

memory safety, most of these defenses are often discarded for performance reasons

or lack of compatibility with the existing code. Most programmers tend to avoid

anything with a high performance overhead.

According to Milo Martin, one of the authors of Softbounds [3], the endowment

effect [30] affects the response of programmers when it comes to making decisions be-

tween having more performance or security. The endowment effect is an attachment

to the object that the person already owns and the persons reluctance to part with it.

Thus, there is a status quo bias. The question generally asked amongst programmers

when deciding to implement a certain security defense is how much performance must

I sacrifice for this defense? If the number is say, 50%, it is highly unlikely that the

defense will be used. However, consider if the question was rephrased to how much

security must I sacrifice for this performance gain? If the number is also, say 50%,

the programmer might think differently before trading security for performance.

Unfortunately, it has been an ongoing trend to trade security for performance.

More emphasis is placed on improving the performance of a program rather than the

security. Due to this, a number of security exploits have arised such as the OpenSSL

Heartbleed bug [5] and the BadUSB bug [6]. The number of exploitable features only

grow, especially with the development of the internet of things, which has been shown

to neglect security because of consumer demand for better performance and usability

[4].

In this thesis, we demonstrate this trend of choosing performance over security

with custom memory allocators. Custom memory allocators achieve performance

improvements, but are poorly designed for security. One of the main goals of cus-

tom memory allocators is to achieve better performance than the system memory
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allocator. However, recent research [9] shows that the system memory allocator out-

performed most known custom memory allocators. Only a specific type of custom

memory allocator, the pool/region allocator, seemed to achieve any sort of perfor-

mance gain. Even then, we show that the challenges created by custom memory

allocators may out-weight the small performance gain offered. Thus, developers may

want to reconsider the use of custom memory allocators.

To better understand custom memory allocators, we study three major servers:

Apache, Nginx, and Appweb. Each three of these major servers use a custom im-

plementation of a pool allocator. First we evaluate their unprotected performance

with and without the custom allocator by manually removing the custom allocator

and replacing it with the system memory allocator. This required code changes to all

three servers. Then, we enable partial protection for the custom memory allocator,

which only enforces spatial safety at the granularity of allocations, and evaluate the

performance of the three servers by measuring the latency for a number of HTTP

requests. Finally, we manually modify these servers to enforce full spatial safety by

adding Intel MPX functions to log all custom allocators. Like before, we evaluate

with and without a custom allocator.

The studies resulted in mixed results. In some cases, performance gains we

expect to see exist. However, in other situations, the performance is actually worse.

For example, when Apache has full protection, the system allocator performs worse

than the custom allocator. Given that the level of granularity is higher in the case

of the custom allocator, one would expect the custom memory allocator to perform

slower. When we consider the other problems caused by using custom allocators, such

as vulnerabilities and granularity limitations, our findings show that developers must

carefully consider the implications before using a custom allocator.

The rest of the thesis is as follows. In chapter 2, we review existing memory

corruption literature and a number of available defenses. In chapter 3, we discuss

Intel MPX, a software and hardware defense that enforces spatial memory safety. In

chapter 4, we examine the general memory allocator and commonly used types of

custom memory allocators. Then we list the advantages and disadvantages of each
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custom memory allocator explored. In chapter 5, we evaluate the security of custom

memory allocators. In chapter 6, we analyze custom memory allocator-aware memory

safety and its implications. We conclude in chapter 7.
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Chapter 2

Background

In this chapter, we examine memory corruption in more detail. Then we review

modern defenses, namely enforcement-based and randomization-based defenses.

2.1 Definition

Memory corruption bus can be categorized into two major classes: spatial memory

bugs and temporal memory bugs. To better understand these bugs, here we look at

how each class works by using a demonstrative example.

A spatial memory bug occurs when an attempt to dereference memory that is outside

the bounds of the allocated object. Traditionally speaking, this is the cause of buffer

overflows. To better illustrate this, consider a character array of size 255. The devel-

oper makes an error while writing his code and mistakenly allows 256 characters to

be written into the array. The array only has enough space to store 255 characters.

Since the program is forced to write all 256 characters into the array, the last char-

acter is written to the memory location right after the array. This provides a good

opportunity for an attacker to exploit.

The second case deals with use-after-free bugs, which occurs when the developer uses

memory that has been returned to the operating system already. A common ex-

ample of a use-after-free bug is a dangling pointer. A dangling pointer occurs when

memory is allocated for a pointer and then freed, but the pointer is still pointing to
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the same memory address. Though the memory is returned to the operating system,

it can still be reused if the pointer has a reference to the freed memory address. This

may be disastrous if the memory has been reassigned to another pointer, as the devel-

oper expects the newer pointer to be the only pointer that has access to the memory

address.

In both these examples, the leading cause is developer error due to the com-

plexity of having to manage memory. The goal of achieving security is seemingly at

conflict with achieving good performance. New attack vectors arise when the devel-

oper is allowed to manage memory. Note that Java is also susceptible to memory

corruption bugs and many have been disclosed to the public [58]. Though Java is

memory safe, the JRE (Java Runtime Environment) is written in C++ .

2.2 Memory Corruption Attacks

In this section, we present the history of exploit techniques that take advantage of

memory corruption.

2.2.1 Code Injection

We start with the traditional buffer overflow exploits [2, 14], a technique that writes

more data to a buffer than the buffer can hold and forces the memory contents to

spill over to adjacent memory locations. The attacker might then be able to change

the control flow of the program. A program consists of an ordering of computer

instructions that get executed. When the program is exploited and the control flow

changes as a result, the program is executing a path that would not get executed

under normal circumstances. To fully understand why overwriting memory allows

the attacker to change program control flow, imagine that we have a stack.

The call stack grows from the bottom-up, as indicated by the arrow right of the

figure. The stack is used to store metadata about the function being executed by the

program. Say the program is currently within a function call (figure 2-1). The object

of interest is the return address, which is the instruction address that the program
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Function Parameters

     Return Address

             Misc

    Local Variables

Figure 2-1: Function Call Stack Layout

will return to once the program finishes executing the current function. Generally,

the return address points to the succeeding instruction in the previous function that

called this function. In order words, the return address points to the next instruction

the program will execute after finishing this function. If the attacker can modify the

return address, then the attacker can change the program control flow by forcing the

program to return to a different location.

1 void f unc t i on (char ∗ s t r ) {
2 char bu f f e r [ 1 6 ] ;
3 s t r cpy ( bu f f e r , s t r ) ;
4 }
5 void main ( ) {
6 char l a r g e s t r i n g [ 2 5 6 ] ;
7 int i ;
8 for ( i = 0 ; i < 255 ; i++)
9 l a r g e s t r i n g [ i ] = ’A ’ ;
10 func t i on ( l a r g e s t r i n g ) ;
11 }

Code Listing 2.1: Buffer Overflow Example 2 taken from [2]

The code excerpt in Listing 2.1 contains a bug that will cause a buffer overflow.

In this example, the program first initializes large string, which is a char array

of size 256 and sets all elements in the array to be the character A. Once that is

completed, large string is copied over to buffer, an array of size 16. buffer

is not able to hold all 256 characters, but the function strcpy (as opposed to the
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safer version, strncpy) does not perform any checks regarding the size difference

and will allow the action to occur. As the program copies all 256 characters from

large string to buffer, some of the As will spill over to adjacent memory.

Function Parameters

           ‘AAAA’

           ‘AAAA’

           ‘AAAA’

Figure 2-2: Function Call Stack Layout After An Overflow

In the aftermath of the overflow is shown in the call stack. Since the return

address is higher up in the call stack than the local variables, the return address has

been overwritten with the As. By doing a simple mathematical calculation (or plain

guess) based on where the local variable buffer is relative to the function's return

address, the attacker can find out exactly where in large string to put the relevant

information to change the return address to a set of instructions that the attacker

wants to execute.

However, where can the attacker find the exact set of instructions to execute?

Do they even exist? The attacker can insert program instructions onto the stack using

a buffer overflow, calculate the address at which these inserted program instructions

are located, and then set the return address in the function call stack to be at that

address. At the time of simple code injection attacks [2], the stack was executable

(gcc today marks the stack as unexecutable except for certain situations), so this

exploit could be pulled off easily.

2.2.2 return-to-libc

The return-to-libc [14, 16] exploit was developed afterwards. It is the first example

of a code reuse attack, in which the existing code in the program is used to change
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control flow as opposed to shellcode injected by the attacker. As the name implies,

the attacker takes advantage of the presence of the libc library in a return-to-libc

attack. libc is the C standard library, which all C programs are guaranteed to have.

The libc functions and source code are readily available on the internet for anyone

to access. There are thousands of lines of code in the libc library, which makes it

a good tool for exploits. In this example, we assume that the attacker has found a

way to overflow the stack through a buffer overflow and has the ability to modify the

return address of the current function to an address of his choosing.

1 ( gdb ) p p r i n t f

Code Listing 2.2: Finding Address of libc function

If we do not (or cannot) use the stack to execute instructions, we must use

existing instructions in the program, but how do we guarantee that an instruction

we need will exist? We know that all C programs contain the libc library, which

is composed of many functions. In most cases, having access to these functions is

sufficient in carrying out an exploit. All that is left is to find out where the libc

functions we need are in memory, which is a simple task. The attacker can find

the address to a function in libc by running the program in a debugger like gdb

and printing out the address. Alternatively, the attacker can use object dump. The

location of libc functions are relative to each other so once the attackers find the

starting address of libc in the program, they know all the addresses in libc.

printf parameters

   Fake Return Addr

           printf

   Overflowed Buffer

Figure 2-3: Function Call Stack Layout after return-to-libc attack

23



For example, suppose the attacker wants to execute printf, even though the

program never calls printf. The attacker must first find the address of the printf

function in libc. If he overwrites the return address in the call stack of the current

function to point to printf, then the program will jump to printf. However, that

will still not achieve the goal of calling printf. As we noticed, all functions have

their own call stack. Since the program was never meant to call printf, the program

does not have a proper call stack for printf. The attacker will have to modify the

stack to mimic the function call stack of the printf function first before “returning”

to printf.

The attacker needs to set the return address of the current function’s call stack

to point to the memory address of the printf function. In addition, he needs to set

a fake return address for the call stack of printf, as the program expects all function

call stacks to have a return address. The fake return address can be bogus or if

the attacker wishes to chain his return-to-libc attack, can be the address of the next

function the attacker wants to call. Then the attacker needs to set up the function

parameters of the printf function, if any exist.

2.2.3 Return-Oriented Programming

Return-Oriented Programming, or ROP, is a technique that was developed around

2005 [17, 18] and has more freedom than return-to-libc attacks. It is fine-grained

code reuse and Turning-complete [17]. In ROP, the hacker reuses machine code (as

opposed to just existing functions) to carry out his exploit.

In this type of exploit, the attacker builds gadgets, which contain lines of

1 pop $eax ;
2 pop $ebx ;
3 r e t ;

Code Listing 2.3: ROP Gadget Example

existing machine code. ROP is called “return-oriented programming” because in the

original exploit, the RET return instruction was used to jump around in code. As a
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result, gadgets often ended with the RET instruction. Similar to how libc functions

are discovered by the attacker, the attacker can find the address of any instruction

using the same techniques. Then, using these lines of instructions, the attacker can

make gadgets. Since there are so many lines of instructions available (whether it be

in the program code or libc, we can guarantee that the gadgets made by the attacker

are Turning complete.

RET

RET

RET

Figure 2-4: ROP Attack

In a ROP exploit (figure 2-4, the attacker jumps to his first gadget. After

the gadget has finished running, the gadget “returns” to the next gadget until all

gadgets have been executed. Since the first paper, there have been numerous papers

published showing that it is not necessary for gadgets to end with a RET instruction

to carry out a successful attack [31, 32, 33]. For example, a JMP instruction could be

used in place of a RET instruction, as both instructions function similarly enough.

2.3 Enforcement-based Defenses

In this section, we examine enforcement-based defenses. Enforcement-based defenses

take a proactive approach in preventing exploits from occurring.
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2.3.1 Non-Executable Memory

Non-executable memory was first developed on OpenBSD in 2003 [15] as WˆX (write

exclusive-or execute). It attempts to solve the problem of code injections during

buffer overflows. With non-executable memory, memory can either be writable or

executable, but not both. The pages (unit of memory) in memory are marked with

an extra bit called the NX bit that determines whether or not the page is writable or

executable. Recall in the code injection example, we overflowed the stack with shell-

code. Even though the stack’s intended purpose was to store information regarding

the variables and return address of the function, we were able to execute instructions

located on the stack. By marking the stack as non-executable (since it is writable),

the shellcode will not be able to run correctly.

Most popular operating systems offer support for the NX bit. It is known as

Data-Execution Prevention (abbreviated as DEP) [14, 36] on Windows.

In response to non-executable memory, code reuse attacks were developed. Code

reuse attacks counteract non-executable memory by not having to inject shellcode.

Instead, because the attack reuses pre-existing code in memory (that is marked as

executable), the attack will not be prevented by non-executable memory. In certain

cases, some attackers find a way to disable non-executable memory on the operating

system (usually with a code reuse attack), inject shellcode, and then complete their

attack [35]. Nonetheless, having non-executable memory is a good deterrent and is

already automatically enabled in most operating systems today.

2.3.2 Control-Flow Integrity

Control-flow integrity (CFI) is a recently developed defense that was first mentioned

in 2005 [24]. Since then, many versions of CFI have been developed, including coarse-

grained and fine-grained CFI. CFI was developed in an attempt to counteract code

reuse attacks. The main principle of CFI is to maintain correct control flow for a

program. CFI must be able to build accurate static or dynamic control flow graphs

for the program that it is protecting. The control flow graphs contain the possible
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paths that a program might follow. Whenever the program takes an illegal path

not marked on the control flow graph, it means that an attacker may possibly be

redirecting control flow.

However, in practice, due to the number of possible paths and unknown variables

(such as cast types) before runtime, control flow graphs are often very complex and

in certain cases impossible to generate beforehand [18].

Fine-grained CFI has a high performance overhead, and as stated before, the

control flow graphs do not have 100% accuracy. Attempts have been made with

coarse-grained CFI to improve performance numbers, but a number of papers have

shown that it is very easy to bypass coarse-grained CFI due to the way coarse-grained

CFI attempts to simplify the control flow graph [37, 38, 39]. More recently, it has

been shown that even with correct control flow graphs, it might be possible to launch

an exploit.

2.3.3 Complete Memory Safety

Complete memory safety is a very powerful technique that prevents almost all memory

corruption attacks [14]. This technique relies on enforcing temporal and spatial safety

by ensuring that the bounds of objects and pointers are correct. The only obvious

disadvantage is the performance overhead that comes with this defense. Intel MPX

[7], which will be discussed in a later chapter, is an example of this defense.

2.4 Randomization-based Defenses

In this section, we study randomization-based defenses. Randomization-based de-

fenses base its defense on information hiding through randomization.

2.4.1 Address Space Layout Randomization

Address Space Layout Randomization (ASLR) relies on randomizing the address

space of a program [40, 41, 42]. The commonly randomized areas are the stack,
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heap, and libraries. In the example for the return-to-libc attack, printf becomes

randomized with ASLR, meaning that the next time the program runs, the address

of printf would be at a different memory location. By randomizing the layout of the

process, ASLR makes it difficult for the attacker to guess where everything in libc

is located. There is a higher chance that the attacker will redirect the program to a

faulty address and cause the program to crash before anything bad occurs.

Combining non-executable memory and ASLR is very common in operating

systems and increases security with a relatively low overhead compared to other de-

fenses.

2.4.2 Code Randomization

Code Randomization is actually as the name implies [43, 44]. It randomizes code

through a series of transformations to make it harder for the attacker to know the

memory layout of the code. Generally, the techniques involving code randomization

are the re-ordering of instructions, changing which register contains the return value

of a function (usually in the x86 instruction set, this register is eax), randomizing

register allocations, inserting nonsensical instructions (NOP), inserting basic-blocks,

and randomizing the stack locations used to save and restore register values.

2.4.3 Instruction Set Randomization

Instruction Set Randomization (abbreviated as ISR) randomizes the instruction set

that the computer is using [45, 46, 47]. This method relies on hiding the instruction

set from the attacker. Thus, the later the computer decides on a instruction set, the

better. However, it does not prevent return-to-libc attacks, which do not rely on

knowing the instruction set [46].
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Chapter 3

Intel MPX (Memory Protection

Extensions)

In this chapter, we review Intel MPX, a base and bounds checker than enforces spatial

safety at the software, hardware, and operating system level. We also examine similar

approaches.

3.1 Definition

To understand how Intel MPX functions, we need to understand what base and

bounds mean. Base refers to the start of the memory location of an object or pointer.

Bounds is the size of the object or pointer in question. For clarity, we demonstrate

this with an example below.

This code snippet allocates an array of size 1024. In this case, the base is the

1 char ∗buf = mal loc (1024) ;

Code Listing 3.1: Simple Malloc Example

memory location at the start of the array. The bounds is the size of the array, which

is 1024 in this example. The memory location at the end of the array is obtained by

adding the bounds to the base. Note that since the index starts at 0, the bounds is

actually 1023.
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If the program tries to access a memory location not recorded as a “base”,

buf } Bounds
Base

Figure 3-1: Base and Bounds

Intel MPX will report a bounds violation error.

3.2 Intel MPX

3.2.1 Design

Intel MPX is a pointer-based solution to enforcing memory safety. Intel Pointer

Checker is the software-based predecessor of Intel MPX. Both defenses function simi-

larly, though Intel Pointer Checker is meant to be used as a diagnostic tool due to its

high overhead. Figure 3-2 demonstrates the change in performance once Intel Pointer

Checker is enabled. Instead, Intel MPX is recommended, which Intel claims has much

faster run-times.

Traditionally, the pointer-based approach modifies the pointers themselves to

maintain base and bounds information. Instead of storing the metadata in each

pointer, Intel MPX records the base and bounds information of every pointer allo-

cated into a separate bounds table. The bounds table takes a hierarchical approach,

similar to how memory is organized. A bounds directory is used to organized bounds

tables, which in turn, record the base and bounds information for individual pointers.

On a pointer dereference, the table is consulted and a check is performed to en-

sure that the operation is legal, meaning the pointer still maintains correct base and

bounds. The bounds table resolves the compatibility issues that traditional pointer-

based approaches struggle with as the pointers in this scheme are left untouched.

Fundamentally, Intel MPX is easy to use. The requirements are to possess a

fifth generation or later Intel processor and to have kernel support in the operating
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system for Intel MPX. Either the gcc or icc compiler can be used. If using gcc, then

gcc 5.0 or later is required. At compile time, the developer must specify the correct

configuration flags, at which point Intel MPX will be enabled for the program. Some

of the possible values for the flags are:

• -fcheck-pointer-bounds: tells the compiler to compile with Intel MPX en-

abled

• -fchkp-check-read: every time a read to memory occurs, checks that the

memory read is within bounds

• -fchkp-check-write: every time a write to memory occurs, check that the

memory being written to is within bounds

• -fchkp-store-bounds: every time a write to memory occurs, stores the base

and bounds

• -fchkp-narrow-bounds: use field bounds instead of full bounds (for example,

a struct in C contain multiple fields)

• -fchkp-first-field-has-own-bounds: the first element in the struct has its

own bounds; otherwise, the first element in the struct has the same bounds as

the whole struct

3.2.2 Implementation

Bounds Table

As stated earlier, Intel MPX achieves spatial safety by checking the base and bounds

of allocated memory. Four new bound registers were introduced to the Intel archi-

tecture and are exclusively used by Intel MPX. Given the limited number of registers

available for storing base and bounds, we will need more than just registers to store

bounds information. The base and bounds are stored in a bounds table instead

and swapped out to the bounds registers as needed. Two new assembly instructions

BNDLDX and BNDSTX were introduced, which correspond to bounds load and bounds
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store respectively. BNDLDX loads an entry from the bounds table to a bounds register.

BNDSTX stores an entry into the bounds table.

The bounds table is a two-level radix tree, where the index is the virtual ad-

dress of all the pointers in the bounds table. A bounds directory is used to look-up

a particular bounds table. Each entry in the bounds table consists of four elements

(the size of pointers): (1) lower bounds, (2) upper bound, (3) check pointer value,

and (4) unused.

Performing Checks

Intel MPX instruments code during compile time in order to perform its base and

bounds checking during run-time. There are five ways in which a pointer may be

dereferenced [50].

1. return value from a function call: both the pointer and its bounds are returned

2. load from memory: bounds are loaded from the bounds table

3. function argument: bounds are passed along with the pointer

4. object address: the object address acts as the low bound and its size is used to

compute the upper bound

5. field address: bounds are narrowed for a field address

We demonstrate bounds checking with an example.

1 int f unc t i on (void ∗∗p)
2 {
3 int ∗ptr = ( int ∗) (∗p) ;
4 return ∗ptr ;
5 }

Code Listing 3.2: Bounds Checking Example [50]

In Code Listing 3.2, the base and bounds information of p are retrieved from the

bounds table at line 3. The actual check is performed when the pointer is returned

at line 4.
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1 int buf [ 1 0 0 ] ;
2 int f oo ( int i )
3 {
4 int ∗p = buf ;
5 return p [ i ] ;
6 }

Code Listing 3.3: Bounds Checking Example 2 [50]

In Code Listing 3.3, when p is assigned to buf, it receives the same base and

bounds of the array. In this case, because buf is an int array, the base and bounds

are [buf, buf + 399]. (It is 399 rather than 99 because each element in the array

is 4 bytes). During line 5, a check is performed to ensure that we are still within the

base and bounds of the array.

Bounds Narrowing

1 struct S1
2 {
3 void ∗ f i e l d 1 ; // s i z e i s 4
4 void ∗ f i e l d 2 ; // s i z e i s 4
5 } ;

Code Listing 3.4: Bounds Narrowing [50]

If bounds narrowing is enabled (which is not turned on by default), Intel MPX

will attempt to get a better estimate of the individual fields in a struct. However,

the fields in a struct has their bounds narrowed only when the fields are referenced.

In this example, field1 has base and bounds as [S1, 3] and field2 has base and

bounds of [field2, 3], S1 has base and bounds of [S1, 7].

3.2.3 Performance Overhead and Compatibility

In this section, we look at the performance overhead of Intel MPX and possible

compatibility issues that may arise.

As mentioned earlier, an entry in the bounds table consists of four pointers. If a

program allocates memory for a pointer, the program also needs to allocate memory
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for the bounds table entry, which would be four times the size of the pointer. If

the program uses a lot of pointers, the total memory consumed can quickly add up

(4x). Additionally, given that we are fetching data from memory, there could be a

performance impact caused by address lookup and cache usage [59].

Figure 3-2: malloc performance when compiled with and without Intel’s Pointer
Checker

To get an accurate estimation about the performance overhead of Intel's Pointer

Checker (the software-only solution), we performed a test with malloc, which is the

default allocator for C. For the experiment, we continuously called malloc and free.

The num of requests in the graph indicate the number of times malloc was called.

bare indicates that the code was compiled without Intel's Pointer Checker. full

indicates that the code was compiled with Intel's Pointer Checker. The times were
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recorded using C’s time library with the clock function. The testing was done on a

personal laptop and on a virtual machine running Ubuntu 14.04. For this experiment,

Intel’s compiler icc was used.

From what is shown, we can see that when the code is compiled with Intel’s

Pointer Checker, there is a 3.5x performance overhead on average.

Compatibility-wise, Intel’s Pointer Checker is compatible with most operating

systems with the exception of Mac OS. It is software-based and consists of wrapper

code for the memory management functions. The program needs to be compiled

with icc and specific flags that enable Pointer Checker. Intel's Pointer Checker itself

transforms the code during compile time to include base and bounds check.

3.3 Related Work

Numerous defenses [3, 48, 49] have emerged to safeguard against memory corruption

attacks by tracking pointer usage and ensuring pointers are manipulated correctly.

We highlight some of the more popular approaches.

1. Object-Based Approach

2. Pointer Based Approach

3.3.1 Object-Based Approach

For the object-based approach [25, 26], the entire object's base and bounds are

recorded and checked. This approach is favorable because it is easily compatible

with the existing system. The memory layout does not need to be modified in order

to adopt this approach. Secondly, for this scheme, pointers are always mapped to an

object. While compatibility might be a reason someone chooses to adopt this scheme,

there are many reasons not to use this approach. One important reason is that this

approach does not entirely enforce memory safety due to the number of edge cases

that arise. The Softbounds paper [3] notes an important case, in which pointers to
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the same object are treated as the same. In their example, they use:

1 struct person {
2 int age ;
3 int he ight ;
4 } ;

Code Listing 3.5: Simple struct Example

In Code Listing 3.5, the pointer to person and the pointer to age, the first

parameter in the structure, both point to the same memory location. Therefore,

according to the object-based approach, the pointer to age would have the same

base and bounds information as the pointer to person. This is incorrect behavior.

The pointer to age should have a smaller bounds than the entire struct. Since this

approach is object-based, it would not be able to narrow the bounds like Intel MPX

can.

In addition to edge cases such as the previous example, there is a significant

overhead with the object-based approach due to the complexity of storing the base

and bounds information of the pointers mapped to objects. For the reasons pointed

out, the object-based approach is not very favorable. It does not enforce complete

memory safety and incurs high performance overhead.

Valgrind

Valgrind is an example of an object-based approach and widely used in industry to

detect memory bugs such as use-after-free, memory leaks, and reading and writing to

invalid memory locations. Memcheck is included in Valgrind’s source code. Valgrind

often introduces a huge drop to performance due to how it instruments the code.

Therefore, Valgrind is usually used as a diagnostic tool to detect mistakes made by

the developer before shipping out the final product.

Whenever memory has been freed, Valgrind will record the address of that piece

of memory in a separate area. If a pointer tries to dereference an already freed memory

address, Valgrind will report an error to the developer. Sometimes, this might fail if
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another pointer is reassigned the memry and the previous pointer’s reference has not

been removed [14].

For memory leaks, Valgrind will report the number of memory blocks that are

“maybe lost” and “definitely lost” and print out the stack trace that lead to the issue.

Valgrind will also report illegal read and writes to bad memory addresses. As it is an

object-based approach, Valgrind does not offer complete temporal safety.

3.3.2 Pointer-Based Approach

The second is the traditional pointer-based approach [20], which involves recording

base and bounds information for each individual pointer, rather than each object. In

the traditional scheme, the pointer is modified to include this information. It solves

many of the concerns that arise with the object-based approach. The edge cases, such

as the aforementioned case where two pointers pointing to the same memory location

are treated with the same base and bounds information, is solved. However, the most

obvious disadvantage with this scheme is that it requires the pointers to be modified

and changes the layout of the program. Compatibility becomes a major concern for

this approach.

Softbounds+CETS

There are also similar safeguards, such as Softbounds+CETS. Softbounds itself is

another example of a base and bounds checker. Like Intel MPX, Softbounds also

records base and bounds information of individual pointers. Instead of a bounds

table, Softbounds uses a shadow table. Softbounds transforms the code with an

LLVM (LLVM is a compiler) pass to record a base and bounds or check a base and

bounds depending on the function or method. It contains a lot of wrapper code

for the memory management functions. It bares a lot of similarities to Intel MPX,

with the exception that it is software only. However, the use-after-free checking for

CETS [8] is much lighter weight than Intel's Pointer Checker according to the CETS

authors.
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Chapter 4

Custom Memory Allocators

In this chapter, we discuss memory management and memory allocators. Then we

expand on the topic with custom memory allocators including popular implementa-

tions, such as Apache's and nginx's custom pool allocator. We assume the reader has

basic knowledge of memory in operating systems.

4.1 Background

Memory management is a crucial function for any computer. It involves handing off

memory from the operating system to the individual processes. Memory is a resource

required by all programs to run properly. When a process wants memory, the process

simply has to ask the operating system. The operating system will hand off memory

to the process that asks for it and keep track of who has what memory. It is similar

to how a library functions. Everyone can borrow memory, but only one process can

borrow a particular block of memory. Once the block of memory is checked out by

the process, no other process can check it out until the memory has been returned to

the operating system. Processes also cannot hand off memory to each other (i.e., once

process A terminates, it cannot give the memory it borrowed to process B). Only the

operating system can lend out memory. Unlike a library, there is no hard deadline

that the process will have to return the memory by. However, the operating system

can at any point reclaim the borrowed memory (such as in the case of a restart or a
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forceful program termination).

Manual memory management is performed when the developer makes a con-

scious decision on when and how much to ask the operating system for memory. This

is done through allocators. With allocators, developers are given the freedom to al-

locate and free memory at an given moment in the program. Though the concept of

manual memory management is relative straightforward, dealing with allocators can

often be frustrating. It is easy to make an error, such as forgetting to free a pointer,

which would cause a memory leak to occur. If the program was running for a long

period of time and the memory leak occurred every ten minutes or so, for example,

then the leakage could add up.

The function of an allocator is to provide available memory to the developer

when asked, to inform the developer that no free memory is available at this moment,

or to take back memory when the developer no longer leads it. For performance and

space efficiency (avoiding fragmentation), the allocator generally maintains a free list.

The free list is most commonly a singly-linked list because elements in a linked list

do not have to be adjacent in memory. It is very rarely that freed memory from the

program returns to the heap. Most of the time, the freed memory is shuffled into

the free list, where it may be reused at a later point by the program. Depending

on the design, the free list may or may not be initially empty. The size of each free

memory block in the list may vary depending on the allocator and on the sizes that

the developer chooses.

Figure 4-1 depicts a free list after a number of allocations and frees have been

made. When a request for memory is made to the operating system, the free list is

checked to see if there are any memory blocks available. There are many implementa-

tions of how the free list performs this check. If there are no memory blocks available

in the free list, memory is then obtained from the heap, which contains dynamic

memory that is available for the developer to take. Otherwise, a free memory block

of the appropriate size is removed from the free list and given.

C and C++ comes with a pre-packaged allocator, which performs dynamic

memory allocation. Dynamic memory allocation differs from static and automatic
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Figure 4-1: free list with free memory blocks

memory allocation. In static memory allocation, the variable persists for the entire

lifetime of the program. In automatic memory allocation, the variable persists for

the duration of the function. In dynamic memory allocator, the variable persists for

as long as the developer wishes or until the end of the program. Dynamic memory

allocation allows the developer more control in allocating and freeing memory, but

also allows for more mistakes to happen in between.

In general, the heap is used whenever there is a request for dynamic memory

allocations. When the developer wants to get more memory, the developer takes it

from the heap and when the developer needs to free an object, the developer returns

the memory to the heap. As discussed in chapter two, failure to properly obtain

or free memory can cause a multitude of problems. As one might expect, the two

common mistakes are when the developer fails to free memory properly after it has

been used and when the developer fails to check if memory was properly allocated.

Below, we discuss reasons why these mistakes sometime occur.

One possible consequence of memory corruption is a memory leak. A memory

leak occurs when memory becomes allocated, used in the program, and the developer

forgets to free it after use. Since the memory never becomes freed, it will not be used

again. We illustrate this with a simple example, where the developer forgets to free
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memory after allocating.

In Code Listing 4.1, we first obtain memory from the heap by calling malloc(size),

1 void makeArray ( ) {
2 char ∗ ar r ;
3 a r r = (char∗) mal loc (1024) ;
4 . . //do s t u f f
5 }

Code Listing 4.1: Memory Leak Example

where size is the amount of memory the developer wants in bytes. However, in this

example, the memory allocated for arr is never freed. The heap has not been informed

that this piece of memory has been freed and thus, nothing else will be allowed to

use it. Memory is wasted.

The proper way, instead, would be to free the memory such as in Code List-

ing 4.2

In this example, we add an additional line, which calls free after the variable is no

1 void makeArray ( ) {
2 char ∗ ar r ;
3 a r r = (char∗) mal loc (1024) ;
4 //do s t u f f
5 f r e e ( a r r ) ;
6 }

Code Listing 4.2: Freeing Memory Example

longer used. free marks the memory as no longer being in use and allows it to be

reused.

Another common case is when the developer fails to check if memory was suc-

cessfully allocated. If memory is not successfully allocated, a null pointer is returned

instead when malloc is called.

We also illustrate this with an example below. These two examples are not the

only scenarios in which an error may occur when dealing with manual memory man-

agement. These errors occur very easily. Most of these errors are resolved once the

program exits. Once the program terminates, all memory is returned to the operating
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1 void makeArray ( ) {
2 char ∗ ar r ;
3 a r r = (char∗) mal loc (1024) ;
4 i f ( a r r == NULL) {
5 // f a i l u r e to ob ta in memory
6 // do s t u f f to f i x problem and/or inform program
7 }
8 //do s t u f f
9 f r e e ( a r r ) ;
10 }

Code Listing 4.3: Checking malloc Example

system. Unfortunately, an attack may have already occurred by then.

The general-purpose allocator is implemented in several ways. One of the two

most common ways is via a naive implementation with sbrk or with Doug Leas malloc

[12], which stores pre-allocated chunks of memory into sorted bins of varying powers

of two for faster performance. When searching for memory in the free list, the allo-

cator looks for a best fit match, meaning it tries to find a memory block that is most

similar in size to the size that has been requested by the developer. The C allocator

uses the implementation by Doug Lea, whose implementation is very efficient in terms

of performance.

4.2 Custom Memory Allocators

Most developers who wish for an improvement in performance may choose to imple-

ment their own custom memory allocators. This section details a number of popular

custom memory allocators.

4.2.1 Per Class Allocators

Per-class allocators are relatively straightforward [51]. These allocators use the pre-

packaged malloc provided by the C/C++ libraries (abbreviated as libc). However, as

the name suggests, per-class allocators maintain several free lists per class [9]. In the

general case, the free list contains different-sized memory chunks. The allocator must
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iterate through the free list to find a block of the appropriate size, which takes time.

However, in per-class allocators, each free list contains memory blocks of identical

sizes because there are more than one free list. In per-class allocators, the burden of

having to iterate through the free list is eliminated. If there is a free memory block in

the list, the block can immediately be returned because it will be of the appropriate

size.

Ov
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d

Figure 4-2: A free list with a fixed memory block size
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One of the bottlenecks is the time it takes for the allocator to iterate through the

free list. There are several optimizations that deal with this. Some free lists allow the

developer to know the size of each memory block according to index, but in the worst

case scenario, the list must be checked at [index, MAX INDEX). Some optimizations

that developer use to eliminate this worse case scenario is by first checking index and

if there are no free memory blocks at index, jump to MAX INDEX instead. However,

this is not efficient in terms of space. By making each free list per class, the per-class

allocator essentially gets rid of this problem because all memory blocks are of the

appropriate size. Note that this adds complexity and according to [9], the trade-off

between the increased complexity and the performance of the per-class allocator is

negligible and sometimes, the per-class allocator performs worse than the general-

purpose allocator.

Another possible advantage of this method is that less fragmentation may occur.

Fragmentation is a tricky problem and occurs when memory blocks of different sizes

are returned to the free pool.

Used Free Memory

Used Free Memory

Used Free Memory Used Free Memory

Figure 4-3: Memory Fragmentation

Eventually, as shown in the figure above, the free memory available becomes

fragmented and becomes interleaved with used memory. The developer is not able

to use all of the available free memory depicted in the figure above for one single

allocation because the free memory is no longer adjacent. Thus, per-class allocators

may help alleviate this effect because all requests are of the same size.
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4.2.2 Region and Pool Allocators

Region allocators allocate huge chunks of free memory beforehand. When requests

for memory are made, memory is taken from the pre-allocated chunks of memory, not

from the heap. This reduces overhead as it reduces the amount of communication

that occurs between the process and the operating system. Region and pool are used

interchangeably.

4.2.3 Custom Pattern

Custom pattern allocators are optimized for specific pieces of code. The program is

analyzed during run-time and the patterns in which memory is allocated is observed

and recorded to see if there are specific trends in which memory is allocated. If the

memory patterns of the code are known beforehand, then optimizations can be done

knowing that pattern. For example, for a specific program, it may be possible that the

program allocates mostly for arrays of size 1024 and 4096. In this case, the developer

knows that it may be wiser to allocate free memory blocks of only size 1024 and 4096.

4.2.4 Apache Pool Allocator

In this section, we explain how the Apache pool allocator is implemented. We first

introduce the three main structs of the Apache pool allocator which are memnode,

allocator, and pool. Then we follow with an example on how pools are used, and

then explain why Apache chose to adopt the pool allocator. For more reference, refer

to apr pools.c and apr pools.h.

Memnode

The most basic component of the Apache pool allocator is the apr memnode t, which

is used by both the allocator and pool structs. apr memnode t is a singly-linked

list. It is the most basic component of Apache’s memory management, as it contains

metadata on the memory owned by Apache.
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Used Free Memory

*end_p*first_avail

Figure 4-4: A free list with a fixed memory block size

Each apr memnode t points to the next apr memnode t, unless it is the last

apr memnode t, which points to NULL. Each apr memnode t also contains a reference

to itself. All apr memnode t nodes point to a specific block of memory that they

have been assigned. Additionally, there is a pointer to the memory address of the

remaining available memory in the memory block, first avail, as well as a pointer

to the end of the free memory block, end p. index records the size of the entire

memory block. first index records the amount of free memory still available. To

get to the start of the entire memory block, we can use end p and size. For reference,

the code source for apr memnode t is provided.

1 struct apr memnode t {
2 apr memnode t ∗next ; // p t r to next node
3 apr memnode t ∗∗ r e f ; // p t r to s e l f
4 ap r u i n t 32 t index ;
5 ap r u i n t 32 t f r e e i n d e x ;
6 char ∗ f i r s t a v a i l ;
7 char ∗endp ;
8 } ;

Code Listing 4.4: apr memnode t

Allocator

The main purpose of the apr allocator t struct is to maintain a free list of memory

blocks and the bookkeeping variables for that list. The free list is implemented with
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Figure 4-5: allocator

apr memnode t elements. It contains MAX INDEX slots, and the size of each memory

block is based on where it is in the list.

size = (i + 1)∗ BOUNDARY SIZE

i is the index number and BOUNDARY SIZE is a set variable. By default, Apache

sets BOUNDARY SIZE to 4096. The exception to this rule is slot 0, which contains

memory block sizes that are greater than the maximum memory block size at the last

slot. Slot 0 houses the over-sized memory blocks.

The bookkeeping variables are mainly there to keep track of the number

1 struct a p r a l l o c a t o r t {
2 ap r u i n t 32 t max index ;
3 ap r u i n t 32 t max f ree index ;
4 ap r u i n t 32 t c u r r e n t f r e e i n d e x ;
5 ap r poo l t ∗owner ;
6 apr memnode t ∗ f r e e [MAX INDEX] ;
7 } ;

Code Listing 4.5: apr allocator t

of free blocks and the current index of the list. Memory blocks are not allocated

beforehand. The index of the free list increases as needed. Whenever a request is

sent to the allocator to obtain a free memory block, the following steps occur. First,

the allocator checks to see if the size is at least MIN ALLOC. If not, the size will increase
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to be MIN ALLOC. Then, the allocator does a walk around the linked list in search of

a memory block that is either the same size or greater than the requested size. If no

block of that size is available, the allocator allocates a new memory block and adds

it to the list. Lastly, the allocator keeps a record of the current pool that owns the

allocator.

Pool

1 struct ap r poo l t {
2 ap r poo l t ∗parent ;
3 ap r poo l t ∗ ch i l d ;
4 ap r poo l t ∗ s i b l i n g ;
5 ap r poo l t ∗∗ r e f ;
6 a p r a l l o c a t o r t ∗ a l l o c a t o r ;
7 } ;

Code Listing 4.6: apr pool t; Note: Some parameters have been removed for simplic-
ity.

apr_allocator_t *allocator

apr_memnode_t *active
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Figure 4-6: pool

The apr pool t struct is the main component of the Apache pool allocator,

and the struct that is used by the developer to obtain memory. To put it simply,

the pool contains two linked lists, one containing the active memory blocks that are

currently in use, and a free list of non-active memory blocks, which is maintained by
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the apr allocator t struct. We have discussed the free list in the previous section.

We will focus on the active list in this section. When a request for memory is first

made, the active list, rather than the free list is first checked. The active list is checked

if the current memory block has enough memory available to fulfil the request. If there

is not enough memory, then the request will be passed to the free list. Otherwise,

the pool will use the memory block in the current active apr memnode t that it is

on, pass the first avail pointer to the developer, and then move the first avail

pointer down accordingly.

After a request for memory, we can see that the pointer first avail has moved

right from its initial position to indicate that memory has been allocated to the

developer and is no longer free.

Used Free Memory

*first_avail *end_p

Used Free Memory

*first_avail *end_p

Figure 4-7: pool

Example

In this section, we will use an example to demonstrate how the Apache pool allocator

can be used.

1 ap r poo l t ∗pool
2 ap r poo l c r e a t e (&pool , NULL) ;
3 char ∗buf ;
4 int ∗buf2 ;
5 buf = ap r pa l l o c ( pool , SIZE) ;
6 buf2 = ap r pa l l o c ( pool , SIZE2 ) ;
7 ap r poo l d e s t r oy ( pool ) ;

Code Listing 4.7: Apache pool allocator example
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In line 2 of Code Listing 4.7, we initialize the pool. In lines 5 and 6, we allocate

from the pool. Since buf2 is allocated right after buf, the two arrays are adjacent

in memory. Finally, when we want to free the memory, we simply destroy the entire

pool. There is no need to individually free everything that was allocated.

Utility

The Apache pool allocator is used for several main reasons. First, the code is fairly

straightforward and easy for most developers to understand and use. Second, there

is a performance increase. Finally, it prevents memory leaks from occurring.

As shown, the Apache pool allocator is straightforward and easy to use. Unlike

the regular malloc, the developer is not required to free all the variables that he

initialized; therefore, that burden is lifted off the developer and only a call to destroy

the pool at the end of the function is required. Pools may also be given a lifetime, in

which the pool is automatically destroyed once a certain amount of time has passed.

In Apache, there is a parent pool that all other pools are children of. Once the parent

pool is destroyed, the children are also destroyed. Thus, once the program ends, the

parent pool is destroyed and all memory is returned to the heap.

Secondly, the use of pool allocators allows for a performance increase. To un-

derstand this, we must understand the difference between general allocators and pool

allocators. Unlike general allocators, which repeatedly ask the operating system for

memory blocks when needed, when a request for memory is made for pool allocators,

the request is fulfilled by the process rather than the operating system. This is pos-

sible because the pool allocator asks for large chunks of memory at a time from the

operating system, which can be used for many requests. Because Apache is managing

its own allocations, it has a performance increase.

Finally, the use of pool allocators means that there won't be any memory leaks.

The pools themselves have a set lifetime. At the end of their lifetime, the pools are

destroyed and the memory that they previously owned is freed. Developers do not

have to free each individual variable for which they allocated memory. This lifts the

burden of potentially causing a memory leak off the developer's hands.
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4.2.5 nginx Pool Allocator

In this section, we examine the pool allocator of nginx, another popular HTTP server,

and how it works. The nginx pool allocator and the Apache pool allocator are actually

pretty similar. For reference, refer to ngx palloc.c and ngx palloc.h.

Being both pool allocators, the design of the nginx pool allocator is almost

identical to the Apache pool allocator. Like the Apache pool allocator, the nginx pool

allocator asks the operating system for large chunks of memory and then manages

subsequent requests locally by using its pre-allocated chunks of memory.

The nginx pool allocator also manages its free list similarly, in that the free

list houses a number of free memory nodes. The nginx pool allocator uses the first

element in its free list like the Apache pool allocator. The first element is used to

store over-sized memory blocks. However, the difference is that the sizes of the free

memory blocks in the linked list is based on an amount specified by the user. Aside

from the first element, the rest of the linked list contains blocks of sizes specified by

the user. Memory is aligned by an internal number when allocated.

Below, we show the two main structs of the nginx pool allocator.

1 typedef struct {
2 u char ∗ l a s t ;
3 u char ∗end ;
4 ngx poo l t ∗next ;
5 ngx u in t t f a i l e d ;
6 } ngx poo l da ta t ;

Code Listing 4.8: ngx pool data t struct

The ngx pool data t serves as the most basic of components, the singly linked

list. Like the Apache apr memnode t, it contains a reference to the next node. last,

end, and failed will be explained in a later example.

The ngx pool t functions similarly to Apaches apr allocator t and apr pool t,

but is much simpler. d is the free list used to manage available memory blocks. max is

the maximum size a memory block in anywhere that isnt the over-sized list. current

is the current pool that we are obtaining memory from. large is used to store over-

sized memory nodes.
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1 struct ngx poo l s {
2 ngx poo l da ta t d ;
3 s i z e t max ;
4 ngx poo l t ∗ cur rent ;
5 n gx po o l l a r g e t ∗ l a r g e ;
6 } ;

Code Listing 4.9: ngx pool s struct

Next, we show how a pool is created.

1 ngx poo l t ∗ ngx c r ea t e poo l ( s i z e t s i z e , n gx l o g t ∗ l og )
2 {
3 ngx poo l t ∗p ;
4
5 p = ngx memalign (NGX POOL ALIGNMENT, s i z e , l og ) ;
6 i f (p == NULL) {
7 return NULL;
8 }
9 p−>d . l a s t = ( u char ∗) p + s izeof ( ngx poo l t ) ;
10 p−>d . end = ( u char ∗) p + s i z e ;
11 p−>d . next = NULL;
12 p−>d . f a i l e d = 0 ;
13
14 s i z e = s i z e − s izeof ( ngx poo l t ) ;
15 p−>max = ( s i z e < NGXMAXALLOC FROMPOOL) ? s i z e :

NGXMAXALLOC FROMPOOL;
16 p−>cur rent = p ;
17 return p ;
18 }

Code Listing 4.10: ngx pool create pool

The nginx pool allocator uses ngx memalign, which is a function that calls

posix memalign and then logs the action. The parameters of the ngx pool t are

then set. last refers to the starting memory location in which there is free memory.

end refers to the end of the free memory block. failed is used during the allocation

process, in which the current pool is searched for available memory. Once failed

reaches four, the next memory pool is looked at.

If the size is larger than page size, then it is placed in the over-sized node.

Otherwise, the allocator checks if a pre-allocated chunk fits the criteria. If not, then

it will communicate with the operating system to get memory.
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Example

We demonstrate how the nginx pool allocator works with a simple example.

1 ngx poo l t ∗ pool = ngx c r ea t e poo l (4096) ;
2 char ∗p = (char ∗) ngx pa l l o c ( pool , 1024) ;
3 char ∗c = (char ∗) ngx pa l l o c ( pool , 1024) ;

Code Listing 4.11: ngx pool create pool

Like the Apache pool allocator, the code to initialize the pool and to allocate

memory is straightforward. The difference is that the ngx create pool function takes

in a parameter, size. size is used to specify the size of the pool. To allocate from the

pool, the developer only needs to call ngx palloc and provide two parameters. The

first is the pool the developer wishes to allocate from and the second is the size of the

object. In the case that we use all 4096 bytes, then the pool allocator will retrieve

a new memory block, where the size will be equal to the amount specified by the

developer.

1 void ∗ ngx pa l l o c ( ngx poo l t ∗pool , s i z e t s i z e )
2 {
3 u i n t 8 t ∗m;
4 ngx poo l t ∗p ;
5 i f ( s i z e <= pool−>max) {
6 p = pool−>cur rent ;
7 do {
8 m = ( u i n t 8 t ∗) n gx a l i g n p t r (p−>d . l a s t , NGXALIGNMENT) ;
9
10 i f ( ( s i z e t ) (p−>d . end − m) >= s i z e ) {
11 p−>d . l a s t = m + s i z e ;
12 return m;
13 }
14 p = p−>d . next ;
15
16 } while (p) ;
17 return ngx pa l l o c b l o ck ( pool , s i z e ) ;
18 }
19 return ngx pa l l o c l a r g e ( pool , s i z e ) ;
20 }

Code Listing 4.12: ngx pool allocator usage example

As shown in the method ngx palloc, if the current memory block does not have

enough space to store the new request, then a new block is allocated.
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Utility

The nginx pool allocator is used for reasons similar to the Apache pool allocator. Like

the Apache pool allocator, it is easy to learn and use. There is also a performance

increase, making it highly favorable in the eyes of many developers. Like the Apache

pool allocator, we will take advantage of the the design. More specifically, we exploit

the fact that that the pool allocator allocates big memory chunks at a time.

Unlike the Apache pool allocator, the nginx pool allocator allows the developer

the freedom to choose the initial pool size. We ran a test to see how the initial pool

size affect performance.

Figure 4-8: nginx Pool Comparison
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For this test, we had two initial pool sizes, which are 4096 and 1000000. Each

instance was subjected to a number of allocation requests before the pool was finally

destroyed at the end. From what can be seen in the graph, the performance of both

instances are similar. This is due to the fact that after the initial pool is used, the

nginx pool allocator allocates block sizes set by the developer. It does not allocate

larger chunks. In essence, the nginx pool allocator behaves like malloc after the

memory in the initial pool has run out.
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Chapter 5

Security Evaluation of Custom

Allocators

5.1 Previous Work

We now present the history of memory allocator corruption exploits.

5.1.1 Doug Lea Allocator

In Smashing the Heap for Fun and Profit [52], named after the infamous Smashing

the the Stack for Fun and Profit [2], MaXX demonstrates one of the first-ever exploits

against the general-purpose allocator. The exploit takes advantage of a heap overflow

through an adjacent heap corruption. In addition, MaXX demostrates unlinking and

frontlinking techniques for corrupting meta-data.

MaXX takes advantage of the fact that the Doug Lea allocator places meta-data

within the memory block itself. Therefore, by overwriting parts of the heap in a par-

ticular manner, the attacker is able to change the meta-data of the memory blocks.

Changing the meta-block data leads to unlinking and frontlinking techniques, which

are used to carry out the exploit.

The unlink technique takes advantage of the linked list structure used to store

free memory blocks.
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1 #define unl ink ( P, BK, FD ) { \
2 [ 1 ] BK = P−>bk ; \
3 [ 2 ] FD = P−>fd ; \
4 [ 3 ] FD−>bk = BK; \
5 [ 4 ] BK−>fd = FD; \
6 }

Code Listing 5.1: unlink, taken from [52]

The call to free essentially is a call to unlink. When unlink occurs, meta-data

that is adjacent to the memory chunk is looked at. With a heap overflow, the attacker

is able to overwrite the meta-data with data of their choosing to execute the unlink

technique.

The frontlink technique is much more difficult to achieve and as been noted by

the author has never been executed in the wild. Frontlinking occurs when there is an

attempt to insert a memory block into the free list. The exploit also tries to overwrite

meta-data to trick the computer into processing a pointer.

5.1.2 jemalloc per-class allocator

jemalloc is a per-class allocator that focuses on performance. The exploits for this

allocator take advantage of adjacent heap corruption. For this allocator, the attacker

first sets up the heap. As a per-class allocator, the free list contains memory chunks

of the same size. The attacker first allocates many times to insert malicious data and

then frees every other memory chunk so that the heap looks like:

Used Free Memory Used Free Memory

Figure 5-1: Adjacent Heap Corruption
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Chapter 6

Custom Allocator-Aware Memory

Safety

Generally, developers use custom memory allocators to improve performance or to

make memory management for languages like C and C++ easier. In this chapter,

we focus on the performance benefits of custom memory allocators along with the

trade-offs that come with using them.

In chapter 4, we defined custom memory allocators and the types of custom

memory allocators. We concluded that the presence of a custom memory allocator

reduces the performance overhead of having to repeatedly ask the operating system for

memory and by extension, improves the application’s performance. However, as with

all designs, there are trade-offs to consider. In the case of custom memory allocators,

the performance benefits of using custom memory allocators become unclear when we

add security defenses to the equation. For instance, consider the case where we are

not using any custom memory allocators and are using the system memory allocator.

In the following code example, we allocate memory by calling system malloc.

1 int ∗ ar r ;
2 a r r = ( int ∗) mal loc ( s izeof ( int ) ∗ 5) ; // i n t array o f s i z e 5
3 f r e e ( a r r ) ;

Code Listing 6.1: Simple Malloc
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If we use Intel MPX to enforce memory safety for an application, we know that

we must establish the base and bounds for the memory allocated by the operating

system for the application at some point. But how does this occur? For Linux and

GCC, the memory management functions in libc such as malloc, calloc, realloc,

memcpy, free become modified by MPX wrapper functions. When the application

makes a call to malloc, the application is first makes a call to a MPX wrapper

function that will record the base and bounds for the memory being allocated before

finally calling malloc.

In this example where we allocate an int array of size five, the base will be the

address of arr and the bounds will be 39. The bounds is 39 because the array has

five ints and each int has eight bytes, totalling to a size of 40 bytes. However, since

the index starts at 0, the bounds is 39. When free is later called, the base and

bounds information for the array will be removed from the bounds table. Finding the

base and bounds is relatively straightforward in the case of the system allocator, but

what happens when we add custom memory allocators to the equation? Consider

the following example, where the application is using a pool allocator to manage its

memory allocations. We define pool alloc to be the malloc function of a generic

pool allocator.

1 int ∗ ar r ;
2 a r r = ( int ∗) p o o l a l l o c ( s izeof ( int ) ∗ 5) ; // i n t array o f s i z e 5

Code Listing 6.2: Simple Malloc Using a Pool Allocator

In this case, assume the application would have asked the operating for a large

piece of memory using system malloc beforehand making calls to pool alloc. When

the application needs memory, it will check if its custom memory allocator has mem-

ory available for use. If the custom memory allocator has memory available, the

application will ask the custom memory allocator for memory rather than the oper-

ating system. However, when we use Intel MPX to try and enforce memory safety

for our application with the pool allocator, Intel MPX is unaware of the fact that the

application is managing its own memory allocations. Therefore, Intel MPX will only
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enforce the base and bounds set by the system memory allocator rather than the cus-

tom memory allocator. Memory safety is only enforced on the large piece of memory

given by the system to the allocator. The individual bits of memory allocated by

the pool allocator through pool alloc are not protected by Intel MPX. This means

that if arr goes out of bounds in this example, Intel MPX will not catch the memory

violation.

6.1 Partial and Complete Custom Allocator-Aware

Memory Safety

6.1.1 Partial Custom Allocator-Aware Memory Safety

In this section, we introduce the concept of partial and complete custom allocator-

aware memory safety. Partial custom allocator-aware memory safety is when the

application is only aware of the base and bounds set for memory allocated by the

system. This is the scenario where we compile an application using a custom memory

allocator with Intel MPX. If the application ever attempts to use memory that is

not allocated to it by the system, such as attempting to read or write to a memory

address that does not belong to it, then Intel MPX will report a memory violation.

Even without Intel MPX to guard the base and bounds of memory allocated

by the system allocator, the MMU (memory management unit) has ways to defend

against similar situations. An application does not have information about the mem-

ory addresses of pages not given to it, so if an application attempts to read or write

to memory outside of its process map, a page fault will occur. Therefore, despite

achieving only partial custom allocator-aware memory safety, there are still benefits

to using it.

Namely, the operating system can enforce base and bounds for every application

and ensure that all of the applications are only using the memory given to them. If

the developer only cares about achieving memory safety at the granularity of the

application level, this is a good solution. Partial custom allocator-aware memory
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safety is easy to implement in that it rarely requires manual modification of the code

and in most cases, the developer will not have to do anything to achieve partial

custom allocator-aware memory safety.

6.1.2 Complete Custom Allocator-Aware Memory Safety

If we want to achieve finer-grained memory safety, we need to use complete custom

allocator-aware memory safety rather than just partial custom allocator-aware mem-

ory safety. As the name suggests, complete custom allocator-aware memory safety is

when the application is aware of the base and bounds for every piece of memory allo-

cated, even the pieces allocated by the custom memory allocator. In the code example

above where a pool allocator is being used to manage memory for the application, it

means knowing the base and bounds of the array allocated by pool alloc.

By default (as we have learned), just compiling the application with something

like Intel MPX will not give us that awareness in the application. These base and

bounds must be explicitly set for the custom allocator. In the case of the system

allocator, the developers of GCC had to devote some work into writing the previously

mentioned wrapper functions for the libc memory management functions to allow

awareness of the base and bounds of allocations performed by the system. Below, we

display an actual example from the Intel MPX wrapper functions for libc.

1 #include ”mpxrt/mpxrt . h”
2
3 void ∗
4 mpx wrapper mal loc ( s i z e t s i z e )
5 {
6 void ∗p = (void ∗) mal loc ( s i z e ) ;
7 i f ( ! p ) return bnd nu l l p t r bounds (p) ;
8 return bnd se t p t r bounds (p , s i z e ) ;
9 }

Code Listing 6.3: GCC’s wrapper function for malloc

In the Intel MPX wrapper function for malloc, we need mark the base and

bounds explicitly using bnd set ptr bounds, which is part of the API provided

by Intel to enable Intel MPX at the software level. Every time the base and bounds
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changes, such as when realloc ( which resizes a previously allocated piece of memory)

is called, then we need to mark the new base and bounds.

For applications with custom memory allocators, the way to achieve complete

memory safety often requires the developer to manually modify the application’s

code. For example, using Intel MPX, the developer will need to modify the memory

management functions in their application’s custom memory allocator code.

The wrapper function might consist of only one to two additional lines of code.

However, even such a small change might not be be feasible to do in a production

setting (as we will soon see.)

6.2 Performance and Security Implications

In this section, we report our findings on the performance implications of enforcing

memory safety protection on applications using a custom memory allocator. We used

Intel MPX as our choice of defense to carry out the experiment. In order to achieve

any sort of custom allocator-aware memory safety with Intel MPX, we must add an

additional number of checks to the application to enforce the base and bounds of the

memory used.

There are two obvious consequences from this action. The first is that the

amount of space required will increase to store this new metadata. Space refers to the

amount of memory used to store the base and bounds in the bounds table and bounds

directory along with the registers added to support the extra Intel MPX operations.

Secondly, we expected that there will be an increase in performance overhead due

to the fact that we are now doing more work by setting and checking the base and

bounds information. While we obtained data to backup the first observation, it was

not as clear-cut for the second observation.

6.2.1 Experiment Methodology

We performed the experiment on three different applications with custom memory

allocators. The first was the Apache HTTP server, an open-source project that
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uses a pool allocator for memory management. The second was the nginx web server,

another open-source project that uses a pool allocator. The third and final application

we used was appweb, a proprietary web server that also uses a pool allocator. While

all three applications use pool allocators, there were significant enough differences

in their implementations that the performance varied differently depending on how

strict the base and bounds were being enforced for the memory allocations being

done. For a more detailed discussion on how the custom memory allocators work for

Apache and nginx, please refer to chapter 4.

Since all three applications are implementations of web servers, the most impor-

tant metric is the time it takes for the web server to respond to a client request. In

our experiment, we measure the time it takes for the web server to answer a client’s

request, given changes to memory management and safety.

We used ApacheBench to measure the performance of four scenarios for all

three applications. ApacheBench is a bench-marking tool that sends a number of

user requests concurrently (this number is controlled by the tester) to a specified

HTTP web page. In our experiment, we send a large amount of user requests to an

HTTP web page that is being managed by the application web server and measure

the amount of time it takes for the web server to respond to the user.

The size of the web page was consistent throughout the experiment. Originally,

the HTTP web page we used was a small file that only consisted of the words “Hello

World”, but we found that having such a small file made it hard to interpret results.

Therefore, we increased the size of the HTTP web page to 360kb.

The experiment was performed on a standard laptop running with an Intel

Core i7 6700HQ processor (Skylake generation) @ 2.60GHz with 12GB RAM on

Linux Ubuntu 16.04.4 LTS. Each of the three chosen applications were subjected to

performance test under five different situations to gather data on how the usage of

Intel MPX and custom memory allocators impacted performance.

The configurations are Custom Allocator/No Protection, Custom Allocator/-

Partial Protection, Custom Allocator/Full Protection, System Allocator/No Pro-

tection, and System Allocator/Full Protection. “Custom Allocator/No Protection”
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means that the application was compiled using GCC without Intel MPX enabled.

No base and bounds information is generated about memory allocated from either

the system allocator or the custom memory allocator. As this is the default way to

compile the application (without Intel MPX and without modifications done to the

application’s source code), the data from this scenario served as the baseline for our

later experiments.

“Custom Allocator/Partial Protection” refers to the partial custom memory-

aware memory safety that we defined in the previous section. The application is

compiled using GCC with Intel MPX enabled so we are aware of the base and bounds

of the allocations performed by the system allocator. As the application code does

not get modified, we do not know the base and bounds of the allocations performed

by the custom memory allocator.

“Custom Allocator/Full Protection” refers to the complete custom memory-

aware safety that we also defined in the previous section. The application code

is modified, such that the memory management functions of the custom memory

allocator make calls to the Intel MPX API. Then the application is compiled with

Intel MPX. We know the base and bounds of all allocations done by both the system

allocator and the custom memory allocator.

“System Allocator/No Protection” and “System Allocator/Full Protection” re-

quired huge modification of all three application’s source code. It involved replacing

the custom allocator with the system allocator. In other words, rather than call

pool alloc, we modified the applications to call malloc instead. When pool free

is called, free is called instead. The implication behind this is that the application

gets the overhead of having to contact the system every time it wants to request or

discard a piece of memory. In return, for using the system allocator, the application

no longer has the overhead of managing its memory. In most of these cases, that

means not having to manage a free list. In “System Allocator/No Protection”, the

application is using only the system allocator and not compiled with Intel MPX. In

“System Allocator/Full Protection”, the application is using only the system allocator

and is compiled with Intel MPX. These two tests were added to further understand
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the implications of using custom memory allocators. By choosing to use the system

allocator only, we wanted to see if there would be a huge impact to performance when

the application was compiled with and without Intel MPX.

6.2.2 Apache Results

Setup

We briefly describe the setup for Apache. We used Apache version 2.2.19. The

configure commands to compile Apache with and without Intel MPX respectively

are:

./configure --prefix="/usr/local/apache"

./configure --prefix="/usr/local/apachewithMPX" CFLAGS="-mmpx

-fcheck-pointer-bounds -lmpx" LDFLAGS="-lmpxwrappers -lmpx"

The “no protection” form of Apache is compiled regularly and without any

additional options. For the versions compiled with Apache, we need to add ad-

ditional information so that GCC knows to compile with Intel MPX. The libc li-

braries used were libmpx.so.0 and libmpxwrappers.so.0. Setting the compiler

flag -fcheck-pointer-bounds tells GCC to record and validate the base and bounds

of allocated memory. For a comprehensive list of compiler options offered by Intel

MPX, refer to the Intel Software Developer’s Manual. Note that the lastest version

of GCC has stopped support for Intel MPX. GCC 9 removes support for Intel MPX

altogether.

Both figure 6-1 and 6-2 record the same data, but display the data differently.

Each data point is based on the number of client HTTP get requests sent to the web

server and the time it took for the web server to respond. The x-axis increment by

100, starting at 10 client requests and ending at 910 requests. Both nginx and appweb

follow the same rules for data-gathering, so we will only explain this in the Apache

section of results.

Based on the results in figure 6-1, “Custom Allocator/No Protection” Apache

has the fastest run-time, followed by “System Allocator/No Protection” Apache,
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Figure 6-1: apache performance

“Custom Allocator/Partial Protection” Apache, “Custom Allocator/Full Protection”

Apache, and finally “System Allocator/Full Protection” Apache. It seems intuitive

for why “Custom Allocator/No Protection” Apache is the fastest out of all five sce-

narios. “Custom Allocator/No Protection” Apache does not have the overhead added

by Intel MPX nor does it have to regularly talk to the system allocator for memory

management.“Custom Allocator/No Protection” Apache has faster results than “Sys-

tem Allocator/No Protection” Apache, which has the increased overhead of having

to communicate with the system allocator for all memory allocations and frees. After

“System Allocator/No Protection” Apache, the next fastest scenario for is “Custom

Allocator/Partial Protection” Apache. This makes sense because the application is

starting to become aware of the base and bounds for one of the allocations, but not

all of them.

We noticed that for certain data points in 6-2, “System Allocator/No Pro-
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Figure 6-2: apache performance

tection” Apache and “Custom Allocator/Partial Protection” Apache performed bet-

ter than “Custom Allocator/No Protection”. Considering the observations we just

made, it does not make sense that “System Allocator/No Protection” and “Custom

Allocator/Partial Protection”, with the additional overhead, would be able to beat

“Custom Allocator/No Protection” Apache in performance. However, consider the

case for “System Allocator/No Protection”. Recall that the Apache pool allocator

maintains a free list of all the memory blocks that was freed by the application pre-

viously. The free list is a linked list of lists, which contain memory blocks. As more

and more allocations are done, the lists in the free list will grow longer and it will

take time to iterate through these lists (as this is a linked list, and list traversals

take linear time). When the memory used by the custom allocator is returned to the

system, the custom allocator will have to remove all the references to the memory

blocks in the linked lists. Depending on how and when these frees are being done, it
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is possible to have an impact on performance. These were the reasons we attributed

as to why “System Allocator/No Protection” was sometimes better than “Custom

Allocator/No Protection”.

In the points where “Custom Allocator/Partial Protection” Apache performed

better than “Custom Allocator/No Protection” Apache, “Custom Allocator/Partial

Protection” Apache’s increase in performance was never more than 5%. This indicates

that the performance gain might be caused by variance in the data results or there

was indeed an advantage to compiling with Intel MPX when the number of requests

is in the range of 200-400.

The next fastest scenario was “Custom Allocator/Full Protection” Apache,

which makes sense based on the results we have seen so far. “Custom Allocator/Full

Protection” Apache has to generate and record the base and bounds of all memory

allocations, unlike the previous three results.

Finally, the slowest scenario was “System Allocator/Full Protection” Apache,

which is not only using Intel MPX, but the system allocator for all allocations. The

overhead of “System Allocator/Full Protection” Apache compared to the second slow-

est “Custom Allocator/Full Protection” Apache was significant in that the difference

was greater than “Custom Allocator/Full Protection” and the third slowest, “Custom

Allocator/Partial Protection”. This reflects the fact that custom allocators do help

in improving performance, if only slightly.

6.2.3 nginx Results

Setup

We briefly describe the setup for nginx. The version of nginx used was 1.12.2. The

configure commands to compile nginx with and without Intel MPX respectively are:

./configure --prefix="/usr/nginx" --without-http rewrite module

./configure --prefix="/usr/nginxwithMPX" --with-cc-opt="-mmpx

-fcheck-pointer-bounds -lmpx" --with-ld-opt="-lmpxwrappers -lmpx"

--without-http rewrite module
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Figure 6-3: nginx performance

Due to the differences in implementation of pool allocators between Apache and

nginx, the results for nginx are slightly different. “Custom Allocator/No Protection”

nginx and “Custom Allocator/Partial Protection” nginx roughly have the same per-

formance measurements. For Apache, there was a bigger difference between “Custom

Allocator/No Protection” and “Custom Allocator/Partial Protection”. The discrep-

ancy is due to the fact that nginx’s pool allocator tends to allocate either small or

large blocks of memory from the system allocator. In both “Custom Allocator/No

Protection” and “Custom Allocator/Partial Protection”, allocations done by the sys-

tem allocator are rare. The small blocks that do get allocated tend to get used for

the client HTTP get requests, but are never reused by the custom allocator. When

large blocks get freed, the blocks are returned to the system allocator and not added

to the free list. Therefore, it makes sense that “Custom Allocator/No Protection”

and “Custom Allocator/Partial Protection” exhibit the same behavior. The number
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Figure 6-4: nginx performance

of calls to malloc is insignificant enough that enabling Intel MPX does not impact

run-time.

There is a bigger overhead when we transition between “Custom Allocator/No

Protection” and “System Allocator/No Protection.” It shows that the nginx custom

memory allocator does improve performance.

The slowest two are “Custom Allocator/Full Protection” nginx and “System

Allocator/Full Protection” nginx. The two have similar run-times. This makes sense

because of symmetry, given that “Custom Allocator/No Protection” nginx and “Sys-

tem Allocator/No Protection” nginx have similar run-times as well.
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6.2.4 appweb Results

Setup

We briefly describe the setup for appweb. We used appweb 7.0.3. Note that appweb

requires the use of an in-house “make” program if we want to specify compiler or

linker flags. The version of appweb used was The configure commands to compile

appweb with Intel MPX respectively is:

CFLAGS="-mmpx -fcheck-pointer-bounds -lmpx"

LDFLAGS="-lmpxwrappers -lmpx -L/usr/lib/x86/64 − linux − gnu − mmpx −

fcheck−pointer−bounds”meconfigure−−prefixbase = ”/usr/local/fullappweb”−

−static

For the compiler and linker flags to be recognized, both flags have to be before

“me configure”. Otherwise, the in-house “make” program will ignore the flags.

Figure 6-5: nginx performance
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We only have a bar graph with a log y-axis for appweb (with three different

scenarios), due to the huge performance overhead that prevent all the data from be-

ing displayed in a regular line graph. “Custom Allocator/No Protection” appweb has

the best performance. The run-times get exponentially worse than the base.“Custom

Allocator/Partial Protection” appweb is exponentially worse (almost 1000% times

slower) and “Custom Allocator/Full Protection” is 10000% times slower. Consider-

ing even an 15% increase in performance overhead can often invalidate a security

mechanism, even “Custom Allocator/Partial Protection” appweb is unusable. In cer-

tain cases like appweb, using Intel MPX can have devastating effects.

6.2.5 Analysis of Results

In all three applications, the changes caused by enabled Intel MPX varied depending

on how strongly memory safety was enforced and what type of allocator was used.

Therefore, even though custom allocators help by increasing performance, they tend

to increase the complexity of the situation when memory protection is required. First,

we have to understand the implementation of the custom allocator. For example, we

need to know how memory is being managed by the custom memory allocator and the

frequencies of memory requests the system and custom allocator get. We also need

to know the latency caused by Intel MPX for all scenarios, such as “Custom Alloca-

tor/Partial Protection” and “Custom Allocator/Full Protection”, but that knowledge

would be incomplete without knowing the latency caused by Intel MPX when the ap-

plication is using the system allocator only. With so many factors at hand, using

something like Intel MPX with custom allocators becomes a much more complicated

situation and we have to wonder if custom allocators are really all that beneficial.
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Chapter 7

Conclusion and Future Work

Obtaining either good performance or security is difficult. Trying to achieve both is

very difficult. We demonstrate this with custom memory allocators. We show that

in most cases, efficiency and correctness are hard to achieve due to the complexity

that comes with manual memory management. More specifically, we know that cus-

tom memory allocators are not the most practical of tools. Only a certain subset of

custom memory allocators yield decent results. For the majority of custom memory

allocators, there are many cases in which the general-purpose allocator or to be more

specific, the Doug Lea memory allocator outperforms the custom memory allocator

[9]. In certain cases, such as the pattern memory allocator, which relies on obtaining

real-life data about the memory allocation patterns of a program, it may not always

be possible. Even if it is possible to examine the program at depth, it may be hard

to find any relevant patterns to exploit for performance.

In Chapter 4, we list a number of popular custom memory allocators and ex-

plain the advantages and disadvantages they provide to the programmer. Only the

pool/region memory allocator proves to be advantageous in terms of memory leak

prevention, minimized communication between the kernel and the process, and a de-

crease in run-time. We show that despite the advantages provided by the pool/region

memory allocator, in hindsight, security considerations make those advantages more

questionable. In Chapter 5, we show that there has been a history of exploits made

on custom memory allocators, and that security is still very much a concern even if
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memory becomes easier to manage.

The idea of custom memory allocators was created from the desire of program-

mers to improve performance and compatibility for specific programs. However, it is

clear that while custom memory allocators have been shown to be good in dealing

with certain bugs that are often common in the C programming language, such as

memory leaks, custom memory allocators are bad in terms of safety. Rather than

use custom memory allocators purely for performance, programmers should look to

a more viable solution that does not undermine safety for performance. There have

been custom memory allocators made that target safety, such as Cling. More efforts

should be placed on these allocators.

In addition, ideas such as minimized communication between the kernel and

process are not exclusive to the pool allocator. In general, it is good practice, es-

pecially if performance is an issue. The Doug Lea allocator also made attempts to

minimize communication. The Doug Lea allocator was created with the goal to act

as a general-purpose allocator. It does not try to improve performance for one spe-

cific type of program, but for all programs. It achieves this and outperforms much

of the custom memory allocators. Therefore, while performance is still an important

concern, perhaps there can be effort on fixing the C programming language such that

memory leaks are harder to be created by the programmer.

By showing the trade-off between performance and security in custom memory

allocators, we hope that this research will allow programmers to realize that more

attempts should be made to find a better solution that does not undermine security.
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