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ABSTRACT 

This report explores auditory modeling as a basis for robust automatic speaker verification. 
Specifically, we have developed feature-extraction front-ends that incorporate (1) time-varying, level-
dependent filtering, (2) variations in analysis filterbank size, and (3) nonlinear adaptation. Our methods 
are motivated both by a desire to better mimic auditory processing relative to traditional front-ends (e.g., 
the mel-cepstrum) as well as by reported gains in automatic speech recognition robustness exploiting 
similar principles.  

Traditional mel-cepstral features in automatic speaker recognition are derived from ~20 invariant 
band-pass filter weights, thereby discarding temporal structure from phase. In contrast, cochlear 
frequency decomposition can be more precisely modeled as the output of ~3500 time-varying, level-
dependent filters. Auditory signal processing is therefore more resolved in frequency than mel-cepstral 
analysis and also derives temporal information. Furthermore, loss of level-dependence has been suggested 
to reduce human speech reception in adverse acoustic environments. We were thus motivated to employ a 
recently proposed level-dependent compressed gammachirp filterbank in feature extraction as well as 
vary the number of filters or filter weights to improve frequency resolution. We are also simulating 
nonlinear adaptation models of inner hair cell function along the basilar membrane that presumably 
mimic temporal masking effects. 

Auditory-based front-ends are being evaluated with the Lincoln Laboratory Gaussian mixture 
model recognizer on the TIMIT database under clean and noisy (additive Gaussian white noise) 
conditions. Preliminary results of features derived from our auditory models suggest that they provide 
complementary information to the mel-cepstrum under clean and noisy conditions, resulting in speaker 
recognition performance improvements. 
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1. INTRODUCTION 

Under a variety of adverse acoustic environments, automatic speaker recognition system 
performance has been shown to degrade (e.g., [Reynolds, 1995]). In contrast, there is evidence that 
human speech and speaker recognition under similar conditions remain robust [Lippmann, 1997], 
[SchNielCry, 1998]. Presumably, human auditory processing is able to better extract salient speech 
information under adverse conditions than standard automatic methods. Indeed, feature extraction 
methods that mimic peripheral auditory processing have been shown under certain conditions to improve 
robustness for automatic speech recognition [JanVL, 1995], [TchKoll, 1999].  

We hypothesize that more complete auditory modeling may provide a basis for robust speaker 
recognition. As a first step, we have explored feature extraction methods inspired from peripheral 
auditory mechanisms that aim to address limitations of traditional front-ends in speaker recognition (e.g., 
the mel-cepstrum). To the extent that the central auditory system performs spectral modulation analysis, 
these initial efforts may also provide an improved basis from which to derive such higher-level 
representations. Preliminary work has accomplished the following: 

1. Development of auditory-based feature extraction methods incorporating 

• Variations in analysis filterbank size using auditory-like gammatone filters 
• Time-varying, level-dependent filtering via gammachirp filters 
• Nonlinear adaptation models 

2. Baseline experiments in speaker recognition using features derived from our auditory front-end 
renditions and contrasted against mel-cepstrum features, both in the clear and with additive 
noise. 

In this report, we describe in detail the above accomplishments and outline our future work in 
further addressing our hypothesis of auditory processing as a basis for robust speaker recognition.
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2. AUDITORY MODELING OVERVIEW 

Human auditory processing occurs in multiple stages, beginning in the cochlea and auditory nerve 
of the periphery to the nuclei of the brainstem and midbrain (e.g., cochlear nucleus, inferior colliculus) 
and subsequently to high-level representations in the auditory cortex [Geisler, 1998][Pickles, 1988] 
(Figure 1). The cochlea performs mechanical frequency analysis coupled to the summed auditory-nerve 
outputs from inner hair cells. Physiological evidence has shown that the spectral content of speech is 
represented in the firing rate and temporal synchrony of auditory nerve firings [Geisler, 1998]. Firing 
patterns of the auditory nerve are subsequently transmitted through mid-level nuclei to high-level 
processing centers. Temporal and modulation information has been shown to also be exhibited in these 
areas [GiraudEtAl, 2000]. We emphasize that in this model the auditory nerve is the sole input to the rest 
of the auditory pathway; thus, if we aim to exploit higher-level representations (e.g., spectral modulation) 
similar to those derived in human processing, the peripheral model should be carefully chosen. 

 

 

Figure 1. Representation of the auditory pathway [KandelSJ, 2000] 
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In the traditional mel-cepstrum, spectral magnitude weighting is performed using ~20 band-pass 
filter weights followed by band-wise energy estimation. In relation to auditory processing, this roughly 
corresponds to deriving rate information at the auditory nerve after frequency decomposition. A notable 
discrepancy exists, however, in frequency resolution. Specifically, frequency decomposition in the 
auditory system is often modeled as the output of ~3500 band-pass filters rather than ~20 filters. It has 
been suggested that the loss of auditory nerve inputs results in poor speech reception, presumably due to a 
reduced ability to represent spectral content [SchWoel, 1995]. In addition, by performing actual filtering, 
auditory processing preserves temporal structure associated with signal phase composition while the mel-
cepstrum discards it. It has been shown that energy trajectories derived from weighting and filtering  
are distinct, with those from filtering showing more clearly certain temporal aspects of speech  
[Quatieri, 2001].  

While filter weights of the mel-cepstrum are invariant, auditory filtering is notably nonlinear and 
time-varying. Physiological and psychophysical evidence has shown that the gain and shape of auditory 
filters is dependent on input sound level [Moore, 1997]. This nonlinearity presumably results from active 
mechanisms in the cochlea in response to sound [Geisler, 1998]. It has been suggested that loss of this 
nonlinearity can account for psychophysical results related to reduced speech reception in adverse 
acoustic environments [OxenBac, 2003].  

We hypothesize that the loss of temporal structure and lack of nonlinearity in the mel-cepstrum 
limits the robustness of automatic speaker recognition, and were thus motivated to incorporate time-
varying, nonlinear filtering in feature extraction. Specifically, our objective at the cochlear level was to 
implement a recently proposed gammachirp filterbank shown to simulate psychophysical and 
physiological data [IrinoPat, 2006]. In addition, we sought to explore the effects of improving frequency 
resolution by varying the number of filterbank weights in the context of the traditional cepstral features; 
this was done using static auditory-like (gammatone) filters. These front-end components are illustrated in 
Figure 2 with the static gammatone filters, the level-dependent gammachip-filter rendition, and the hair 
cell model (to be subsequently discussed). 

Also shown in Figure 2 are two additional components of our complete auditory model: (1) 
Synchrony computation that will couple with a complex spectral modulation representation (e.g., the 
Atlas representation [SchimmAtlas, 2005]) and (2) a modulation filterbank that emulates the mid-level 
inferior colliculus operation of the auditory pathway [DauKK, 1997]. Ultimately, we will also add to our 
previously-developed notions on how the high-level auditory regions may process modulation in a two-
dimensional time-frequency space [Quatieri, 2002]. 
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Figure 2.  Auditory model incorporating low- and mid-level auditory processing. 
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3. CEPSTRAL FEATURES WITH IMPROVED FREQUENCY RESOLUTION 

Our initial effort was motivated by the possibility that the human auditory system exploits a large 
number of frequency channels to achieve robustness in speech-related tasks. Specifically, we studied the 
effects of improving frequency resolution by increasing the number of analysis filter weights used in 
feature extraction. 

3.1 FEATURE EXTRACTION 

Speech data were initially pre-emphasized with a frequency-domain weighting function1. Features 
were then extracted as in the mel-cepstrum (i.e., spectral magnitude weighting followed by a discrete-
cosine transform (DCT) of band-wise log-energies), though with increasing number of filter magnitude 
weights. We chose this implementation to assess the effects of improved frequency resolution, 
independent of additional auditory modeling components. Static gammatone filterbank weights were 
initially used and covered the same frequency region of the standard (mel-cepstrum) triangular filters 
[Slaney, Toolkit] (Figure 3). We then generalized this static gammatone set from ~24 filters to an 
arbitrary number by sampling a nonlinear continuous function representing the logarithmic relation 
between basilar membrane location and center frequencies and their bandwidths. Because the feature 
dimensionality grows with increasing filter number, we explored two different approaches:  

1. Allow the dimensionality to grow with increasing filterbank size. 

2. Trim the dimensionality by keeping only the first 19 DCT coefficients (excluding the 0th 
coefficient). 

 

                                                      

1 The pre-emphasis function is given by P(f) = 1 + f 2 / 25000 with f being continuous-time frequency.  
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Figure 3. Equal-energy normalized linear gammatone filters. 

3.2 BASELINE RECOGNITION EXPERIMENTS 

Preliminary results (Figure 4) in varying gammatone filterbank size do not show a significant 
correlation between number of filters and speaker recognition performance. We used in this initial 
experiment the TIMIT corpus with 256 target speakers [FisherDG, 1986]. TIMIT was recorded in the 
clear at a 16k sampling rate, is phonetically balanced, and has a good representation of speaker types and 
dialects. We chose TIMIT as our initial testing copus in order to isolate the importance of the candidate 
features themselves without influence from uncontrolled background or channel distortion.  

The classifier used is the Lincoln GMM-UBM system, and no channel or score compensation is 
applied [ReyQuatDunn, 2002]. The background model was trained with 168 TIMIT speakers, equally 
distributed with males and females, with 10 TIMIT utterances for each speaker. There were 137 female 
and 326 male target speakers, with eight training utterances and two test utterances for each. In these 
experiments, we used the above trimmed and untrimmed versions of our DCT coefficients, giving 19 
coefficents (trimmed) and N = filterbank size (–1) (untrimmed), respectively. The general equal error rate 
(ERR) performance in these two cases (Figure 4), both for males and females, is close to that of the 
standard 19th-order mel-cepstrum features (not shown). 

Though this result may reflect the sufficiency of frequency resolution of the mel-cepstrum, we do 
not believe this to be true. With trimming, the lack of performance gains may stem from our method of 
feature reduction. Without trimming, the number of filters corresponds to the total number of features 
derived in cepstral analysis. In the first case, we sought to avoid the “curse of dimensionality” in pattern 
recognition by using only the first 19 coefficients (excluding the zeroth value) as in the DCT. It is unclear 
whether this “trimming” of coefficients effectively exploits the large number of channels available. With 
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no trimming, although more speech information is available, we may have encountered the curse of 
dimensionality, in particular, for a GMM-based classifier. Other classifiers, such as support vector 
machines, may thwart this dimensionality tradeoff [CampSRS, 2006]. 

 

 

Figure 4. Speaker verification performance with static gammatone filtering with increasing filterbank size. Equal 
error rate (EER) is shown. 

It is interesting to observe in Figure 4 the performance gap between males and females. This gap 
has also been found in previous studies with the use of mel-cepstrum features in speaker recognition. A 
speculation was that by increasing the size of the front-end filterbank, we might reduce the effect of 
aliasing in the DCT, occurring for high pitch with sparse spectral sampling, and thus with trimming 
improve the accuracy of low-DCT coefficients. It appears, however, that under-sampled formant 
information cannot be recovered by a single-frame representation, and that alternate methods such as 
exploiting temporal signal modulation may be the key to reducing this gender gap. 
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4. AUDITORY-BASED FEATURE EXTRACTION USING TIME-VARYING 
NONLINEAR FILTERS 

In the previous section, we studied the effects of improving frequency resolution using the static 
component (i.e., the gammatone) of the level-dependent gammachirp for spectral magnitude weighting 
and reported on baseline speaker recognition experiments. In this section, we consider a more complete 
peripheral auditory model by including the chirp component of the gammachirp filterbank, level-
dependent compression, and two different hair cell models, one by Dau et al. [DauPK, 1996] and the 
other by Meddis [Meddis, 1986]. In addition, we perform a variety of baseline speaker recognition 
experiments using features derived from these various auditory models, both in the clear and in noise. 
Based on our recognition results from Section 3.2, when investigating filterbank size, we will invoke the 
trimmed case only. 

4.1 AUDITORY-BASED FEATURE EXTRACTION IMPLEMENTATION 

Model components were assessed individually and in combination for feature extraction. Pre-
emphasis was initially performed on speech data using a first-difference operation2. 

Level-dependent filtering: Distinct from the previous section, features from the auditory model 
are derived from actual filtering rather than spectral magnitude weighting (see Section 2). The 
gammachirp filter that we have implemented is composed of three cascaded infinite-impulse-response 
(IIR) filters: a linear gammatone filter (from our previous section), a passive low-pass asymmetry, and a 
level-dependent asymmetry (Figure 5). The level-dependent asymmetry with the passive asymmetry 
modifies the shape and gain of the filter based on input level (Figure 6); with increasing input levels, 
gains are reduced while bandwidths are increased.  

 

                                                      

2 The pre-emphasis function in discrete time is given by [ ] [ ] 0.97 [ 1]y n x n x n= − − . 



 

 

12 

 

Figure 5. Composition of gammachirp filter. 

 

Figure 6. Gammachirp filter with varying levels. Higher levels have lower gain and larger bandwidths. 
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In filtering, the signal is filtered through parallel paths to determine the filtered result while 
estimating the input level (Figure 7). Level-estimation is done using a fast-attack slow-decay function that 
follows an input level to a local maximum and then decays according to a half-life parameter (Figure 8) 
[IrinoPat, 2006]. 

For each feature case, the envelope of the filtered speech signal from each auditory channel 
(derived from the Hilbert transform3) is low-pass smoothed and down-sampled, and is followed by the 
DCT analysis. The low-pass filter cutoff used in envelope smoothing is set consistent with downsampling 
to a 10-ms frame interval. Although smoothing reduces temporal resolution, it is essential to avoid 
aliasing in a feature representation. 

 

 

Figure 7. Level-dependent filter implementation. 

 

 

                                                      

3 Other possibilities exist for envelope calculation. For example, rectification and low-pass filtering may be closer to actual 
auditory processing. 
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Figure 8. Example of fast-attack slow-decay estimation of level: (top) input pressure, (bottom) estimated control 
parameter. Units are normalized. 

Cochleograms4 derived using the gammachirp filter have been suggested to accentuate salient 
features of speech [IrinoPat, 2006]. Our preliminary work has compared the outcome of the gammachirp 
filters with traditional mel-cepstral filters. Figures 9 and 10 show cochleograms derived using 1) energy-
equalized mel-cepstral filters, i.e., standard triangularly-shaped static filters, 2) gammachirp filters (with 
level-dependence), and 3) energy-equalized passive gammachirp filters (without level-dependence, i.e., 
the static gammatone case) for a speech utterance in the presence of additive Gaussian white noise for 
several signal-to-noise ratios (SNR) and under a clean condition. Responses are similar under clean and 
near-clean conditions, while the gammachirp notably exhibits less relative distortion in higher frequency 
channels as SNR decreases. Although these results appear promising for robust feature extraction, a 

                                                      

4A correlogram is a time-frequency distribution derived from output envelopes of an auditory-like filterbank. 
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significant caveat is that differences in distortion were not present for all of the speech utterances 
examined. Further work is needed in examining the mechanisms leading to these differences to assess 
how they may be exploited for robust feature extraction. 

 

 

 Figure 9. Cochleograms derived from (top) mel-, (middle) gammachirp, and (bottom) passive-gammachirp filters 
for clean speech utterance, “I’ll print out all their records.”  
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Figure 10. Same as Figure 9 but with SNR = 30 (left-top), 20 (right-top), 10 (left-bottom), and 0 dB (right-bottom). 

Nonlinear adaptation: Activity at the auditory-nerve level, allowing spectral and temporal 
representations of speech, results from the synaptic release processes of the inner hair cell [Geisler, 1998]. 
The dynamics of these processes results in unique temporal characteristics of auditory nerve activity 
collectively referred to as adaptation. As observed for sustained stimuli (e.g., a pure tone), post-stimulus 
time histograms of auditory-nerve activity exhibit sharp onsets followed by compression; furthermore, at 
the stimulus offset, an overshoot of reduced activity is present (Figure 11). In the context of feature 
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extraction from the envelope of an analysis filterbank, a notable distinction between nonlinear adaptation 
and the log function used in cepstral analysis is the enhancement of transient behavior (Figure 11) 
[QuatMS, 2003]. Furthermore, it is likely that adaptation is responsible for the psychophysical 
phenomenon of masking. Reported gains in automatic speech recognition (ASR) noise robustness when 
this nonlinearity is incorporated in feature extraction are presumably the result of these distinctions 
[TchKoll, 1999]. 

In combination with the gammachirp filterbank, we have evaluated two models of nonlinear 
adaptation for use in feature extraction for speaker recognition: The first is the inner hair cell model by 
Dau, Puschel, and Kohlrausch (DPK) [DauPK, 1996] and the second by Meddis [Meddis, 1986]. The 
DPK model is derived from psychophysical results in forward masking. The Meddis model is based on 
purported mechanisms of synaptic transmission and is fit to physiological data. Acting on the envelope 
from the gammachirp filter output, both models are used in place of the log function in cepstral analysis; 
all other aspects of feature extraction are identical to those discussed in the following section. 

 

 

Figure 11. Input envelope (top) and response of Meddis hair cell model simulating adaptation (middle). The log-
compression (bottom) with minimum value clipped at ~ –3 normalized amplitude for comparison. 
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4.2 BASELINE RECOGNITION EXPERIMENTS 

In our speaker recognition experiments, we again used the TIMIT corpus. Experimental setup is the 
same as that given in Section 3.2 for the clean condition. For noisy conditions, Gaussian white noise was 
added to training and testing data. Feature extraction involved (1) increasing filterbank size in noise with 
the level-dependent gammachirp alone, and (2) inclusion of the DPK and Meddis adaptation models with 
the level-dependent gammachirp. Resulting scores are compared to the mel-cepstrum. 

Preliminary equal-error-rate (EER) results in varying filterbank size in noise are shown in Figures 12 and 
13. Mel-cepstral features are derived using the traditional frequency weighting pre-emphasis  
P(f) = 1 + f 2 / 25000 while the gammachirp employs the first-difference ( [ ] [ ] 0.97 [ 1]y n x n x n= − − ). Both 
feature sets are derived from the static gammatone weights (see Section 3). We used the trimmed versions 
of our DCT coefficients, giving 19 coefficients, which is smaller than the full DCT length. The technique 
of trimming was introduced in the previous section. For this scenario, our preliminary results do not show 
a significant correlation between number of filters and performance for both mel-cepstral weighting and 
level-dependent gammachirp-filtering front-ends. Furthermore, results show similar performance between 
the mel-filter and gammachirp cases, although the mel-cepstrum overall performs slightly better.  

As we argued for the static gammatone results, we believe the results of the gammachirp reflect 
insufficiency in our dimensionality reduction method of “trimming” rather than the sufficiency of the 
mel-cepstrum’s frequency resolution.  

 

Figure 12. Equal error rate (EER) performance for the mel-cepstrum with increasing filterbank size in noise 
(derived from the static gammatone). 
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Figure 13. Equal error rate (EER) performance for level-dependent gammachirp filtering with increasing filterbank 
size in noise. 

For a stricter comparison, Figure 14 shows results from level-dependent gammachirp filtering with 
the mel-cepstrum derived from traditional triangular critical-band weights. Pre-emphasis is the same in 
both cases, employing the first-difference. Filterbank size was set to 24 with trimming to 19 DCT 
coefficients in both cases, as is typically done in the mel-cepstrum. We obtain reductions in EER ranging 
from 0.5~2% with fusion of the scores (equal weighting) with greater gains at lower SNR. The 
comparable performance of the gammachirp with the mel-cepstrum and the gains obtained with fusion 
suggest that the gammachirp filtering may provide complementary information to the mel-cepstrum. 

Finally, our initial comparison of nonlinear adaptation models shows that the Meddis model 
consistently outperforms the DPK in speaker verification, though both are less robust than the mel-
cepstrum. The comparative EER results are shown in Figure 15 for males, along with the result of score-
fusion of Meddis- and mel-cepstrum-based features (showing negligible fusion gain). Similar relative 
gains hold for females. That the Meddis model is higher performing than the DPK is perhaps due to 
inherent weaknesses of the DPK as a purely phenomenological model. Specifically, it has been shown 
that its response to transient behavior and its choice of parameters are physiologically implausible5. The 
performance gap between the mel-cepstrum and the Meddis model may be attributed to limitations of our 
                                                      

5 Thanks to Nicolas Malyska for a personal communication.  
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current feature extraction methods in mimicking auditory processing, assuming of course that auditory 
processing is our “gold standard.” Most notably, the Meddis model is derived from physiological 
responses to acoustic stimulation. Nonlinearities in auditory filtering are therefore already incorporated 
via the model’s choice of parameters. By acting on the envelope of the gammachirp, filtering 
nonlinearities are likely twice represented, thereby distorting the auditory representation of the signal. 

 

 

Figure 14. (top) Level-dependent gammachirp-filter (ldsc) and mel-cepstrum (mfcc) EER scores for males (m) and 
females (f) under clean (SNR = 62) and noisy conditions (SNR = 0 – 30); (bottom) performance gains obtained with 
fusion. Filterbank size = 24 in both methods. 
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Figure 15. Performance comparison of Meddis versus DPK nonlinear adaptation, along with score fusion with 
standard mel-cepstrum. 
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5. FUTURE EFFORTS 

In summary, preliminary results suggest that incorporation of level-dependent filtering in feature 
extraction may provide complementary information to the mel-cepstrum in noise. Nevertheless, we have 
only touched upon the use of auditory modeling for speaker recognition. Our work has raised a multitude 
of questions to be answered in future work. 

We will explore a number of approaches to better understand how auditory processing results in 
robust representations of speech in noise. For example, we have observed that gammachirp filtering is 
able to reduce the effects of noise for certain speech segments but not others. One possible explanation for 
this limitation is the “open-loop” nature of the model, unlike the actual “closed-loop” periphery consisting 
of descending efferent feedback from central pathways. Both physiological and psychophysical evidence 
suggest that efferent stimulation plays a role in noise suppression. Stimulation reduces auditory filter 
gains and enhances auditory nerve responses to transients in noise [KawaseEtAl, 1993]. In addition, 
speech-in-noise reception benefits from activation of efference in humans [GiraudEtAl, 1997]. 
Incorporation of a control component similar to efference with gammachirp filtering may therefore allow 
more robustness in our auditory representations. 

Our current frontend also utilizes the envelope from filtering to derive the speech spectrum while 
discarding potential contributions from temporal synchrony (i.e., auditory nerve phase-locking). 
Synchrony-derived representations, however, have been shown to be more robust in noise for automatic 
speech recognition than rate-based methods (e.g., [Ghitza, 1987]). Our future work will explore the 
explicit incorporation of neural synchrony as a means to improve robustness.  

Limitations of our current front-end will also be addressed in the general scope of speaker 
recognition. Specifically, incorporation of models that exclusively mimic synaptic transmission (e.g., 
[SumnerLPMM, 2002]) with gammachirp filtering would eliminate the nonlinear redundancy previously 
noted and better mimic auditory processing. To better exploit larger filterbanks, two possible directions 
are to utilize traditional dimensionality reduction methods (e.g., principle components analysis) or to 
employ machine learning paradigms shown to be robust to large feature size (e.g., support vector 
machines [CampSRS, 2006]). Alternatively, outputs of peripheral filtering could be used in conjunction 
with models of higher processing centers in the auditory pathway in the reduction of dimensionality, as 
has been suggested by Yang, et al. [YanWanSha, 1992]. 

Our future work will also involve integration of our auditory-based approach with a complex 
modulation envelope approach (such as that by Atlas [SchimmAtlas, 2005]) by introducing neural 
synchrony, Ghiza’s modulation bandwidth paradox [Ghitza, 2001], and Dau et al.’s modulation filterbank 
interpretation of the inferior colliculus [DauKK, 1997]. Ultimately, we will also introduce two-
dimensional processing speculated to occur in high-level auditory mechanisms [Quatieri, 2002]. In all 
future work, although some testing will be done in the clear, our emphasis will be on furthering our 
understanding of auditory processing of modulation in noise environments and testing our feature 
extraction in these environments. 
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