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In recent years, speech translation tech-

nologies have advanced out of research insti-

tutions and into real-world applications. As 

these technologies have become more accu-

rate (see the companion article “Machine Translation for 

Government Applications,” on page 41), many applica-

tions once requiring human translators have now become 

feasible using automatic methods.

Much of the improvement in the last decade has been 

driven by investment in these technologies by the Defense 

Advanced Research Projects Agency (DARPA). Currently, 

DARPA is sponsoring two programs: Global Autono-

mous Language Exploitation (GALE) and TRANSTAC, 

which stands for Spoken Language Communication and 

Translation System for Tactical Use. Both programs have 

a strong speech translation focus, and both have cre-

ated real, working machine translation (MT) systems 

for military applications. These programs differ in their 

application: GALE is building large-scale speech transla-

tion systems for foreign-media-monitoring applications, 

whereas TRANSTAC is concerned with building speech-

to-speech translation systems for smaller-scale (often in 

embedded systems) tactical communications.

In both cases, the core technologies are the same: 

speech recognition and MT. Currently, the U. S. Army 

is transitioning these technologies developed under 

DARPA into a large-scale acquisition program called 

Sequoyah. As part of this program, the Army will be 

developing systems to support platform-independent 

speech-to-speech (S2S), speech-to-text, and text-to-

Advocate is a set of communications application 
programming interfaces and service wrappers 
that serve as a framework for creating complex 
and scalable real-time software applications from 
component processing algorithms. Advocate can 
be used for a variety of distributed processing 
applications, but was initially designed to 
use existing speech processing and machine 
translation components in the rapid construction 
of large-scale speech-to-speech translation 
systems. Many such speech-to-speech translation 
applications require real-time processing, and 
Advocate provides this speed with low-latency 
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»



 VOLUME 18, NUMBER 1, 2009  n  LINCOLN LABORATORY JOURNAL 55

A. RyAn AminzAdeh And WAde Shen

text translation that use components supplied by algo-

rithm vendors. Therefore, a framework is needed that 

allows integrators to combine best-of-breed speech and 

translation technologies for platforms ranging from a 

single handheld device to a large computer farm. As the 

program is far-reaching in its objectives and timeline, 

the applications that are currently envisioned are likely 

to change. This means that a framework for Sequoyah 

should be flexible enough to allow support for many dif-

ferent kinds of applications.

The framework developed here is called Advocate, 

a set of communications application program interfaces 

(APIs) and service wrappers that enable existing software 

components to be combined into a single application and 

run either on a local machine or across a distributed grid 

of computers. Advocate provides an infrastructure for 

system designers to combine different computationally 

intensive processing algorithms (for instance, speech rec-

ognition and MT) that can either run on a single proces-

sor or a distributed grid of computing resources using the 

same API. Component algorithms in the framework are 

wrapped to create services that can run persistently so as 

to avoid repeated startup.

Advocate uses existing standards to allow platform-

independent communication and automatic resource 

management and discovery, making the resulting appli-

cation easy to configure and use. Compute components 

in Advocate are wrapped to create services that can then 

run on a computer grid or as local libraries. Applications 

are constructed by defining data flow graphs (DFGs) of 

these services, called advocates. Advocates automate the 

passage of data between services and collect results.

Advocate was designed to support large-scale speech 

translation applications that combine speech recognition 

and MT technologies to process large volumes of speech 

data. In this article, we describe the design of Advocate, 

its performance characteristics, and its application in the 

context of a large-scale speech translation system.

Speech Translation
The typical S2S translation system is a three-stage process. 

A speech recognition system produces a text transcript 

from an audio recording, and an MT system converts this 

text into corresponding text in a different language (e.g., 

French to English). Finally, a text-to-speech (TTS) syn-

thesis system generates speech based on this translation.

Speech Recognition

State-of-the-art automatic speech recognition (ASR) 

systems employ hidden Markov models (HMM) to rec-

ognize words from an acoustic signal [1]. HMMs are a 

method of statistical modeling for systems assumed to be 

Markov processes with unobservable state. An HMM can 

take a set of observations (the acoustic signal, in this case) 

and model the probabilities of observations given pos-

sible underlying unobservable states (the words uttered 

in the acoustic signal) and the probabilities of sequences 

of unobservable states. These models are developed using 

training data that provides the basis for developing the 

statistical distributions representing both the observation 

and transition probabilities. 

The search for W*, the translated word or message, 

(a process called decoding) is performed by taking an 

acoustic signal (a set of observations) and computing 

the most likely sequence of underlying words that would 

have generated the observed acoustic signal. This process 

combines the probability of a word generating an observa-

tion and the probability of a word following a particular 

sequence of words.

In general, ASR systems can be defined by the fol-

lowing equations:

 WW WW WWWW* argmax ( | ) ( )= P o P

and

 

P P w
i

N
w wi i i n( ) ( | ... ) ,WW ≈

−
∏ − − −
1

1 1

where P(o|W) denotes a probabilistic function that mod-

els W to the acoustic observations o (typically called the 

acoustic model) and P(W) is the probability of generating 

the current word w given prior words (typically called the 

language model).

Large-scale ASR systems can make use of millions of 

parameters to model P(o|W) and P(W). As a result, the 

search for W* can take significant computer resources. 

Current systems, even heavily optimized, can use more 

than ten times the real-time computer resources during 

decoding when maximizing accuracy. Only smaller-scale 

ASR systems can run on very limited computer resources 

(e.g., cell phone processors such as the ARM7/9 series). 

Furthermore, these systems can have a significant startup 

time (i.e., in model loading and precomputation).

S2S applications can use both large- and small-

scale ASR, depending on the target application. For the 
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experimental systems described in subsequent sections, 

we make use of an internally developed, large vocabulary 

system as well as several commercial off-the-shelf (COTS) 

systems. Lincoln Laboratory’s Information Systems Tech-

nology Group has developed MT systems; in this work, we 

use them and a variety of COTS systems.

Machine Translation

Currently, the best MT systems use statistical models to 

learn translations of source words into target words. This 

process creates a large memorized table of translation 

pairs, called a phrase table, which maps words from the 

source language to the target language [2]. During trans-

lation, the best hypothesis T* is defined by:

 TT SS TT TT* argmax ( | ) ( ) .= T P P

As with ASR, P(T) is a language model (typically mod-

eled via n-grams —multiple words that “go together”), 

and P(S|T) is the phrase table (or translation model from 

language S to language T). The modeling and decoding 

processes for MT systems, aside from the nature of the 

data itself, are parallel processes of training and decoding 

an HMM. In large applications, the phrase table and lan-

guage model can consist of hundreds of millions or even 

billions of entries. As a result, the search process used to 

decode the best translation for a given input sentence can 

be computationally expensive.

Text-to-Speech Synthesis

Speech synthesizers are used to convert text in the tar-

get language into a speech signal. Current systems use 

either models of speech like those used for ASR (i.e., 

HMM-based text-to-speech) or explicit waveform chunks 

from natural speech concatenated together to form the 

output signal (i.e., concatenative text-to-speech) [3]. In 

both cases, significant signal processing and search com-

plexity make these systems computationally demanding 

(although generally less so than ASR or MT). For this 

work, we employ COTS systems.

All components of an S2S translation system are 

error prone. That said, different systems don’t necessar-

ily make the same errors. System combination attempts 

to exploit this variation in errors by combining outputs 

from multiple systems to create an improved hypothesis. 

In recent years, MT research has focused on ways to either 

select the most correct hypothesis from multiple systems 

or integrate hypotheses from multiple systems to create 

a more correct hypothesis than created by any individual 

system. Most combination methods rely on consensus 

between systems to decide correctness.

Existing Frameworks

A number of frameworks have been developed to address 

the need for building large-scale distributed applica-

tions, and S2S translation systems in particular. While 

these frameworks attempt to address some of the same 

challenges as Advocate, their focuses diverge from Advo-

cate’s in ways described later in this article. Some existing 

frameworks and their notable features are listed below.

UIMA. Originally developed by IBM, Unstructured 

Information Management Architecture (UIMA), now 

distributed open source by Apache, is a large-scale archi-

tecture designed for analysis and search [4]. Easily adapt-

able to speech translation applications, this architecture is 

designed to be extensible, yet because of its applicability 

to a wide array of applications, it requires a significant 

amount of overhead in terms of up-front programming 

to customize applications. This overhead is necessary to 

support any sort of information management. Of particu-

lar note is the fact that this framework, like the others to 

be described, operates in discrete units, producing one 

output for every input. This processing paradigm is not 

conducive to real-time processing/applications.

Galaxy. Developed by the Spoken Language Systems 

Group at MIT’s Computer Science and Artificial Intelli-

gence Laboratory, Galaxy is a hub-and-spoke style archi-

tecture designed specifically for speech applications [5]. 

Its central hub is programmable and defines the flow of 

data among servers running computationally expensive 

speech/language processing components. The central 

hub, meant to be a lightweight client, also keeps track of 

the conversation state and history in the speech applica-

tion. This architecture requires that data be forwarded by 

the central hub, increasing the overhead associated with 

data transfer between servers and the hub, or the client, 

when operating in real time.

OpenAgent. OpenAgent, developed by SRI Interna-

tional, is a research framework that provides software ser-

vices in a distributed environment [6]. In this framework, 

services (called agents) register with clients (called facili-

tators). Using registered agents, facilitators can process 

requests from users. The framework does not assume that 
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agents will be constantly available (i.e., some may unreg-

ister, new agents may join at any time). Thus, facilitators 

dynamically recompute the set of needed services and the 

data flow needed to satisfy a user’s request. 

Unlike Advocate, the data flows between services 

are not statically defined. Instead a user requests defined 

“goals” that a facilitator can satisfy using existing agent 

resources. OpenAgent also differs in that services register 

with a predefined set of clients (instead of the dynamic 

service discovery used in Advocate). Resource manage-

ment and load balancing are not explicitly implemented, 

though it might be possible to do these processes through 

extension to the existing framework.

GATE. GATE, or General Architecture for Text 

Engineering, an open-source infrastructure for human-

language technology, was developed at the University of 

Sheffield [7]. Services, called modules in the GATE archi-

tecture, are either wrapped natural-language processing 

(NLP) components or objects developed from scratch 

using the architecture’s API. GATE is based completely 

on Java and focuses, much like UIMA, on annotation-

based storage and passing of data, implying synchronous, 

one-in-one-out operation on discrete elements. As of ver-

sion 2, GATE’s processing resources are not distributed or 

parallel—all execution is done locally. This structure dif-

fers from Advocate’s distributed, asynchronous, real-time 

processing structure. GATE also differs from Advocate in 

its constraints on input/output between modules, which 

include required byte offsets and adherence to a particu-

lar annotation model, as opposed to Advocate’s format-

agnostic data-passing paradigm.

JAVA/RMI and Jini. Unlike the frameworks listed 

above, Jini is a general-purpose architecture for distributed 

computation (i.e., not specifically developed for speech/

language applications) [8]. Originally developed by Sun 

Microsystems for use with Java [9], Jini is an architec-

ture developed for building service-oriented applications 

in dynamic settings. Like Advocate, Jini supports service 

discovery and remote access to computer resources (via 

remote method invocation or RMI). Asynchronous com-

munication can happen in this framework via events.

Jini differs with Advocate in several ways. The basic 

paradigm that Jini employs allows clients to both access 

services and act as services themselves for other clients. 

Furthermore, Jini is restricted in its communications 

protocols, employing RMI, which is strictly Java-based. 

Advocate’s employment of Extensible Markup Language-

Remote Procedure Call (XML-RPC) for communications 

among services and clients allows it to span across more 

varied environments [10].

The Advocate framework
To restate, Advocate is a set of communications APIs and 

service wrappers that enable existing software components 

to be combined into a single application with minimal 

communications and processing overhead. Like the prior 

frameworks, Advocate was designed to combine exist-

ing speech processing components. In contrast to these 

systems, however, Advocate supports real-time stream-

ing operation and an asynchronous processing model. 

It also allows for flexible data passing between different 

processing modules to support various applications; for 

example, both UIMA-style annotations and Galaxy-style 

constraint-based routing can be implemented by extend-

ing Advocate classes, as well as. Furthermore, Advocate is 

intended to be more portable, easier to use, and scalable 

to large, high-throughput applications.

The architecture consists of an Advocate client appli-

cation described by a list of required services, which, in 

this case, are speech and language processing components, 

and the required flow of data between them. Services can 

be configured by the client to return both data and meta-

data to the client after each stage of processing.

Advocate can work with existing grid/cloud infra-

structures, such as Sun Grid Engine or Hadoop. In the case 

of nonpersistent services (services that are constructed 

and torn down on a per request basis), scheduling can be 

done via grid services while interprocess communication 

is handled by Advocate. When services need to be persis-

tent because of high startup costs, grid resources can be 

allocated at startup by Advocate.

Dynamic Service Discovery

Advocate provides automatic discovery and registration 

of its services. To this end, we use Bonjour, a public COTS 

implementation of the Internet Engineering Task Force 

Zero Configuration Networking (ZeroConf) group. Bon-

jour works much in the same way as the domain name ser-

vice (DNS) once services are registered. Each client runs a 

special process called the multicast DNS responder that 

acts as a local registry of existing services. As each service 

starts, it registers with all available multi-DNS (mDNS) 
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responders via a user datagram protocol (UDP) multicast 

message that contains its Internet protocol address, port 

information, a service-type descriptor, and information 

regarding the server’s current load (used by the client to 

select minimum latency services).

Clients continually browse the registry in their 

respective mDNS responders for new services that come 

online. As services join or leave, the registry is updated 

in real time, as shown in Figure 1. Multiple clients can be 

deployed at any one time, each with its own unique mDNS 

responder. Similarly, multiple instances of a given type of 

service can be running at the same time, each broadcast-

ing its own unique address and/or port number to all the 

mDNS responders listening for UDP broadcasts. Since 

the purpose of this architecture is to construct distrib-

uted systems built from remote components, the service 

discovery protocol includes mechanisms for traversing 

network address translation devices, such as routers, that 

bridge different private networks. This capability allows 

for maximum flexibility.

Clients and Services

In Advocate, clients define a data processing data flow 

graph (DFG) that consists of multiple services. DFGs can 

be arbitrarily directed acyclic graphs defining the data 

flow between services. Using a DFG, each advocate acts 

as a data processor employing services, ingesting data, 

and producing output results, along with any by-products 

that are requested.

Each instance of an Advocate client, shown in Figure 

2, is a separate process that runs with a companion mDNS 

responder (handling the service registry as described 

above). At their core, Advocate clients implement an 

XML-RPC client with code to define how the client del-

egates tasks to services, as well as a ResultHandler 

with an XML-RPC server, which handles asynchronous 

responses from services once their processing has com-

pleted. This module also defines, in code, how processed 

results are handled. Clients can be easily customized by 

overriding these modules.

Services in Advocate are data processors. They receive 

requests from clients (either directly or indirectly for-

warded through other services) and process data associ-

ated with them. Communications happen in a streaming 

fashion: (1) clients open streams to services, (2) clients 

write to that stream, and (3) clients close the stream. 

Results from services are produced asynchronously 

and returned to the client via RPC calls to the client’s 

ResultHandler. A more detailed Advocate operation 

procedure follows:

1. Client opens stream to first service.

2. Client sends request to the first service, which 

writes data to the stream and specifies whether 

output/metadata ought to be returned to the cli-

ent when the service produces a result.

3. Service processes data.

4. When a result is generated, the service con-

tacts the client, returning output/metadata if 

they had been requested. The service then asks 

whether/where to forward data.

5. The client responds, telling the service whether 

to forward its data and, if so, the destination.

6. If service is told to forward data, it writes the 

data to the queue of the next service, opening 

that service as needed.

Client 1

Client n

Advocate

Code

Name/Type IP address Port
mDNS responder

Broadcast 
registration message

Advocate
service 1

Advocate
service n

fiGuRe 1. Advocate services apply user data protocol 
broadcast messages to register their name/type, Internet 
protocol address, and port number with the multi-domain 
name server (mDNS) responder sitting on the Advocate  
client’s machine.
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Services can handle multiple streams from multiple 

clients simultaneously. Each stream is associated with a 

data queue and data processing thread. As data are written 

to this queue, algorithm code is invoked in the data pro-

cessing thread. If results and/or metadata are generated, 

they are queued to corresponding output and metadata 

queues respectively. This queuing is shown graphically 

in Figure 3.

Unlike the hub-spoke model (as found in the Gal-

axy program, for instance), the client does not receive 

results produced by services unless they are needed. 

This feature minimizes communications overhead 

and client load. The overall communication pattern is 

shown in Figure 4 for a linear, three-service example.

Building Services

Two distinct methods exist for creating Advocate services 

from compute algorithms:

1. Light service wrappers that run compute algo-

rithms as separate processes. These are useful for 

rapid prototyping using preexisting binaries and 

in cases where the source code is not available.

2. Tightly-coupled, link-time library interfaces 

that call compute algorithms directly.

In both cases, the resulting service appears to have the same 

interface to clients, and both types of services are available 

to clients either locally or as distributed services.

fiGuRe 2. An active registry of available Advocate ser-
vices is maintained throughout, with an XML-RPC client 
making requests to route data, an XML-RPC server receiv-
ing and handling data, and an mDNS responder running as 
separate processes.

mDNS 
responder

XML-RPC client

Client code

XML-RPC server

Result handler

Client 1
Threads

Client 2

Client 1
result handler

Client 2
result handler

Client n
result handler

Algorithm
code

Client n

fiGuRe 3. An XML-RPC server receiving data and algo-
rithm codes that can be run in multiple threads, each with its 
own data queue, allows multiple deployments of a service.
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fiGuRe 4. Advocate client-to-service communications avoid data transport overhead by having 
data forwarded between services, allowing the client to act as a mediator, designating where the 
data should go. Data and metadata are only sent to the client when specifically requested.
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fiGuRe 5. Advocate service wrappers are designed to require as little work as possible on the 
system designer’s end. Mechanisms to customize service startup tasks, Remote Procedure 
Call (RPC) specifications, and component interfacing are built into the code.

/**
 * Service Wrapper for MIT/LL MT Service
 */
public class MTService extends AdvocateService {
  /**
   * Main Entry point for this service
   */
  public static void main(String [ ] arg ) throws Exception {
 MTService service = new MTService (Integer to Value(arg[0])) ;
  }
  /**
   * The constructor for local interfacing
   */
  public MTService ( ) {
 super ( )
     // ... do service-specific init for local interfacing
  }
  /**
   * The constructor for service initialization
   */
  public MTService(int xmlrpcPort) throws Exception {
 super (”MTService”, xmlrpcPort);
     // ... do service-specific init for RPC interfacing
  }
  /**
   * Thread to process requests (asynchronously)
   */
  private class MTRunServiceThread extends RunServiceThread {
 private MTRunServiceThread (AdvocateRequest request) {
  super(request);
       }
 void runWrapper( ) {
   synchronized(inputLock) {
  byte [ ] inputContent = inputContentQueue.removeFirst( );
   }
   // ... do processing here
   synchronized(outputLock) {
  outputContentQueue.add(output);
  outputMetadataQueue.add(metadata);
   }
 }
  }
}

XML-RPC

Data

Data

Data

Data

Data

Data

Data

Data

HTTP
XMLXML

fiGuRe 6. XML-RPC allows data to be transferred via remote procedure calls using HTTP.  
This transfer of data over Transmission Control Protocol gives Advocate its distributed computing 
capabilities (figure adapted from [10]).
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examples of how services can be configured in Advocate 

clients. The upper pipeline is a simple S2S application. 

The lower figure shows a more complicated S2S applica-

tion in which multiple MT systems are fused to produce 

a single output. 

In the case of S2S translation, often the data flows 

are linear or near linear (e.g., speech recognition followed 

by MT). As this pipeline-like structure is quite common, 

the default implementation of the Advocate client sup-

ports a simple XML descriptor interface to describe these 

pipelines with optional fields where the user can specify 

which components return their output and any metadata 

back to the client. An example of this descriptor format is 

shown in Figure 8.

As previously stated, many existing S2S systems 

require more complex, nonlinear operational capa-

bilities. Advocate allows the user to, with little effort, 

override the default linear data flow. In this case, cli-

ents, given an arbitrary data flow graph, must compute 

a topological sort to create a partial order of services, 

resulting in an ordered list containing sets of services 

that can be performed in parallel. Each set is then dis-

patched in order, and results are transmitted between 

services as defined by the data flow graph. Facilities for 

sorting, dispatching, and forwarding are built into the 

Advocate client library and can be customized by the 

application designer.

Scheduling and Resource Contention

By design, multiple instances of the same Advocate ser-

vices can be running on a computer farm and accessible 

Light service wrappers, written in Java, can be used 

to interface components that are set up and run via com-

mand line calls by encapsulating these commands in a 

structure compatible with Advocate’s API. This process is 

relatively simple, and a template for building these types 

of services is shown in Figure 5.

Tightly coupled libraries can be used to directly make 

Advocate API calls from the source code of the compo-

nent itself. This approach yields maximum flexibility and 

control over the interface between the component and 

its service functionality in the context of Advocate, but 

requires that the source code for the component itself be 

readily available.

Platform-Independent Communications: XML-RPC

Advocate is designed to be platform neutral with sup-

port for communications between clients and services 

of different architectures. To this end, we use a standard 

XML-RPC approach, shown in Figure 6, for all commu-

nications. XML-RPC uses the hypertext transfer protocol 

to transport transmission-control protocol messages with 

XML encoding between computers, allowing for remote 

procedure calls with complex data-structure transport. 

Services and clients within the Advocate framework act 

as XML-RPC servers and clients respectively.

Data Flow Graphs

An Advocate client defines a data flow graph that gov-

erns when and how data are passed between services for 

processing. This is a directed acyclic graph describing the 

dependencies between different services. Figure 7 shows 

fiGuRe 7. In the top example of Advocate applications, there is a linear pipeline for data flow, with each service oper-
ating serially on the previous service’s results. Shown on the bottom is a corresponding nonlinear pipeline for data flow, 
where the machine translation (MT) combiner must wait for three MT services, processing in parallel, to complete their 
processing and forward their results. When there are multiple MTs, the parallel process is more efficient and faster.

Speech
recognition

Machine
translation 1

Machine
translation 2

Machine
translation 3

Machine
translation 
combination

Speech
synthesis

Speech
recognition

Machine
translation 

Speech
synthesis
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to clients. During startup and while running, services 

periodically report their loading and status to clients. 

Clients use this information to determine which services 

will minimize latency and, by default, they select services 

using this criterion. Other, more fair, scheduling policies 

are easy to implement in Advocate as the default behavior 

can be overridden. Advocate services queue requests from 

multiple clients, and data processing threads associated 

with each client are scheduled, by default, on a first-come-

first-served basis. Again, this behavior is easily overridden 

when customizing Advocate services.

Real-Time Streaming and Asynchronous Content

Advocate is designed to support streaming, real-time 

operation. To this end, data are written to services by cli-

ents (and other services) as a stream, and services may 

produce results asynchronously (i.e., one input may pro-

duce zero or many outputs) as described earlier. This 

approach allows services to produce results as soon as 

the input has been written (modulo processing latency). 

As such, the framework does not introduce significant 

latency in the process.

Consider the example, shown in Figure 9, in which 

<advocate>
<content inputData=”/dev/audio-in” outputData=”/dev/audio-out”/>
<service destinationClass=”SpeechRecognition” returnContent=”false” returnMetadata=”true”/>
<service destinationClass=”MachineTranslation” returnContent=”false” returnMetadata=”true”/>
<service destinationClass=”TextToSpeech” returnContent=”true” returnMetadata=”true”/>
</advocate>

fiGuRe 8. This example of an XML file for describing an Advocate application specifies services in the pipeline and option-
ally indicates points where metadata ought to be returned to the client. This is the default description mechanism for Advo-
cate and applies to linear pipeline descriptions only.

fiGuRe 9. An asynchronous speech recognition service can generate output without requiring complete processing of the 
input data. In this case, the highlighted (in gray) speech acts as a single input that generates multiple output words as soon 
as they are recognized, without waiting for the entire input audio segment to be processed. This configuration allows a single 
input to generate zero or many outputs.
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a client has written the 

highlighted region of audio 

(360 ms) comprising the 

words don’t and see to a 

speech recognition service. 

The recognition service can 

produce the word don’t as 

soon as it’s able to process 

the first 160 ms of speech. 

It will not need to wait until 

the entire buffer has been 

processed. In this mode, 

when a service generates 

results, it informs the client 

actively via an RPC callback mechanism (i.e., calling the 

client’s ResultHandler) as soon as possible.

Speech-to-Speech experiments with Advocate
In order to evaluate the performance of the Advocate 

framework, we put together a demonstration Arabic-to-

English speech translation system using both internally 

developed (Arabic speech recognition and MT) and COTS 

components (Festival English TTS).

Using this system, we measured the latency incurred 

by the Advocate framework when compared against the 

sum of processing latencies for each service’s algorithm (i.e., 

the minimum achievable latency for this pipeline, given 

the algorithms used with zero-framework latency). We also 

measured the throughput limit of an Advocate system in 

terms of its ability to pass data through a data flow graph in 

which services are running on different computers.

System Latency and Overhead

In order to compute the latency introduced by the Advo-

cate framework, we measured the latency for each of the 

algorithms in our linear data flow. The ideal latency of such 

a linear data flow is simply the sum of each component 

algorithm’s processing latency. The difference between the 

ideal latency and the real latency of a system is the mar-

ginal latency. We measured the real latency for five audio 

files of varying size, since we expected that the marginal 

latency—the overhead associated with Advocate—should 

increase with file size. The reason for this expectation is 

that as file size increases, so does the time required for 

encoding and decoding XML data transfers from the 

XML-RPC communications protocol, file-system input 

and output, and data transmissions across a network.

As we can see in Table 1 and Figure 10, the marginal 

latency of the Advocate architecture increases linearly 

with the file size being processed. The marginal latency 

is a small percentage of the overall processing time when 

you consider the data sizes being processed. In the real 

case of a distributed environment with services on dif-

ferent processors, the marginal latency is only about 10% 

of real-time audio duration. This latency can be further 

optimized in future versions via compression methods, 

particularly in the XML encoding schemes used to trans-

mit data among distributed services.

System Throughput

We measured the ability of the Advocate framework to 

process data in a pipeline fashion under real-world net-

work conditions. The throughput of the system can then 

be measured by the number of requests the framework 

 Table 1: Advocate overhead and computational latency

 AuDIo fILe ReAL IDeAL MARgINAL
  DuRATIoN (S) LATeNCy (S) LATeNCy (S) LATeNCy (S)

 4 21.8 21.4 0.4

 8 25.8 25.0 0.8

 12 31.0 29.8 1.2

 16 36.5 35.0 1.5

 20 41.92 40 1.92

fiGuRe 10. The marginal latency associated with Advo-
cate processes is a linear function of the audio file duration. 
The overhead is approximately 10% of the file size.
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(in this system’s case, this was always the ASR) was used 

as the initial delay in computing how many requests could 

theoretically be processed per minute. The results of the 

experiments are shown in Table 3.

As we can see, in both the idealized and actual cases, 

throughput of the system decreases with the file size and 

falls short of the expected throughput, given the known 

latencies of the services for that size of data, whether it be 

dependent or not. This result indicates that throughput is 

lowered because of delays incurred during transmission of 

data between services across a network, and these delays 

increase when larger amounts of data are being transferred. 

Performance, however, is fairly close to ideal. What these 

results show us is that the costs incurred by Advocate are 

minimal when the processing time of the services is longer 

relative to the amount of data that need to be transferred. 

On the other hand, using Advocate in a setting with large 

amounts of data and very fast services is less than optimal 

because of the relatively high overhead of data transfer 

compared to very short service processing times.

can process in a fixed amount of time. 

First, we measured Advocate’s through-

put under idealized conditions by setting up a 

series of three dummy services (without algo-

rithm processing) that simply transfer input 

data to the next service in a linear data flow 

graph after holding the data for a fixed period 

of 5 seconds each. Five seconds was chosen 

because it is longer than the delay incurred 

by the network in transferring the data, and 

so the latency of the system is guaranteed to 

be service-process-time bound. Each of the 

three services ran on separate but identical 

processor within the same subnet as the Advocate client. 

Multiple Advocate clients were then configured to send 

eighty identical requests (audio files of a given size) to the 

pipeline. The average number of requests processed per 

minute is then recorded as the throughput. 

Under the idealized conditions, we expect that the 

only delay incurred will be the fixed 5-second delay of the 

first service, and therefore we would expect a constant 

throughput of twelve requests per minute. This is because, 

under these conditions, data of the same size passing 

among identical services require the same amount of time 

for processing at each stage; there are no bottlenecks due 

to data transfers.

However, because of data passing delays across a 

network, the actual throughput under these conditions 

will vary with data size. Table 2 shows the results of 

these experiments and the effects of varying data size on 

throughput in the idealized case.

Next, we measured Advocate’s throughput under the 

more realistic conditions of our Arabic S2S demonstration 

system described earlier. Once again, the data 

size was varied and eighty identical requests 

were processed, with multiple clients making 

requests. However, in this case the services are 

not idealized; therefore, rather than a fixed 

delay of 5 seconds, the processing delay, and 

by extension the system’s expected through-

put, becomes a function of the data size as 

well. To compute the expected throughput, 

we averaged the processing time of each com-

ponent over the eighty trials for a given file 

size and located the process with the longest 

delay. This weakest link in the list of services 

 Table 2: idealized Throughput Rates
  AuDIo fILe eXPeCTeD ACTuAL
  DuRATIoN THRougHPuT THRougHPuT
 (S) (RequeSTS/MINuTe) (RequeSTS/MINuTe)

 4 12.0 11.0

 8 12.0 10.67

 12 12.0 10.5

 16 12.0 10.0

 20 12.0 9.75

 Table 3: Realistic Throughput Rates
  AuDIo fILe eXPeCTeD ACTuAL
  DuRATIoN THRougHPuT THRougHPuT
 (S) (RequeSTS/MINuTe) (RequeSTS/MINuTe)

 4 3.22 3.17

 8 2.46 2.40

 12 1.99 1.95

 16 1.62 1.59

 20 1.38 1.37
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deployment plans
Internally, Advocate has been demonstrated on clusters 

of 100+ CPUs. Our testing indicates that latency due to 

the framework and network communications combined is 

fairly minimal, and that this framework, therefore, could 

be scaled to much larger processing grids without increas-

ing network bandwidth.

The Advocate system has been deployed to testbeds 

at the Air Force Research Laboratory with 200+ CPUs 

where researchers are evaluating and using a number of 

COTS and government off-the-shelf (GOTS) ASR/MT/

TTS systems for government S2S applications. Advocate 

combines these systems to create processing data flow 

graphs that may someday support applications such as 

coalition communications (e.g., NATO forces communi-

cating cross lingually), document translation, and cross-

lingual information search.

The Army’s Sequoyah program could potentially use 

Advocate as a framework for a testbed to evaluate GOTS 

components. As Lincoln Laboratory has a role in test and 

evaluation, several prototype S2S translation systems with 

in-house technologies will be used to design metrics and 

evaluation procedures. Details of this effort are described 

in the companion article in this issue.

Other applications of Advocate include large-scale, 

real-time speech processing for voice search applications. 

For example, libraries may want to create searchable indi-

ces of news broadcasts from multiple simultaneous chan-

nels. In these applications, a large computer infrastructure 

is typically built to run speech recognition technologies 

and build large database indices for later searching. In 

this type of application, Advocate can be used to com-

bine speech recognition services with database engines 

to perform indexing. Multiple Advocate clients can work 

in parallel to index multiple channels.

Since Advocate was designed to be a general-purpose 

framework, many applications requiring distributed, real-

time services can be built quickly and efficiently by using 

nonparallel COTS/GOTS components. In the coming 

months, we will be working with existing government 

sponsors to develop some of these applications. As we 

continue to test and refine Advocate, we intend to release 

versions to a wider community of developers. n
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