
54 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 1, 2009

Advocate: A Distributed
Architecture for Speech-
to-Speech Translation
A. Ryan Aminzadeh and Wade Shen

In recent years, speech translation tech-

nologies have advanced out of research insti-

tutions and into real-world applications. As

these technologies have become more accu-

rate (see the companion article “Machine Translation for

Government Applications,” on page 41), many applica-

tions once requiring human translators have now become

feasible using automatic methods.

Much of the improvement in the last decade has been

driven by investment in these technologies by the Defense

Advanced Research Projects Agency (DARPA). Currently,

DARPA is sponsoring two programs: Global Autono-

mous Language Exploitation (GALE) and TRANSTAC,

which stands for Spoken Language Communication and

Translation System for Tactical Use. Both programs have

a strong speech translation focus, and both have cre-

ated real, working machine translation (MT) systems

for military applications. These programs differ in their

application: GALE is building large-scale speech transla-

tion systems for foreign-media-monitoring applications,

whereas TRANSTAC is concerned with building speech-

to-speech translation systems for smaller-scale (often in

embedded systems) tactical communications.

In both cases, the core technologies are the same:

speech recognition and MT. Currently, the U. S. Army

is transitioning these technologies developed under

DARPA into a large-scale acquisition program called

Sequoyah. As part of this program, the Army will be

developing systems to support platform-independent

speech-to-speech (S2S), speech-to-text, and text-to-

Advocate is a set of communications application
programming interfaces and service wrappers
that serve as a framework for creating complex
and scalable real-time software applications from
component processing algorithms. Advocate can
be used for a variety of distributed processing
applications, but was initially designed to
use existing speech processing and machine
translation components in the rapid construction
of large-scale speech-to-speech translation
systems. Many such speech-to-speech translation
applications require real-time processing, and
Advocate provides this speed with low-latency
communication between services.

»

 VOLUME 18, NUMBER 1, 2009 n LINCOLN LABORATORY JOURNAL 55

A. RyAn AminzAdeh And WAde Shen

text translation that use components supplied by algo-

rithm vendors. Therefore, a framework is needed that

allows integrators to combine best-of-breed speech and

translation technologies for platforms ranging from a

single handheld device to a large computer farm. As the

program is far-reaching in its objectives and timeline,

the applications that are currently envisioned are likely

to change. This means that a framework for Sequoyah

should be flexible enough to allow support for many dif-

ferent kinds of applications.

The framework developed here is called Advocate,

a set of communications application program interfaces

(APIs) and service wrappers that enable existing software

components to be combined into a single application and

run either on a local machine or across a distributed grid

of computers. Advocate provides an infrastructure for

system designers to combine different computationally

intensive processing algorithms (for instance, speech rec-

ognition and MT) that can either run on a single proces-

sor or a distributed grid of computing resources using the

same API. Component algorithms in the framework are

wrapped to create services that can run persistently so as

to avoid repeated startup.

Advocate uses existing standards to allow platform-

independent communication and automatic resource

management and discovery, making the resulting appli-

cation easy to configure and use. Compute components

in Advocate are wrapped to create services that can then

run on a computer grid or as local libraries. Applications

are constructed by defining data flow graphs (DFGs) of

these services, called advocates. Advocates automate the

passage of data between services and collect results.

Advocate was designed to support large-scale speech

translation applications that combine speech recognition

and MT technologies to process large volumes of speech

data. In this article, we describe the design of Advocate,

its performance characteristics, and its application in the

context of a large-scale speech translation system.

Speech Translation
The typical S2S translation system is a three-stage process.

A speech recognition system produces a text transcript

from an audio recording, and an MT system converts this

text into corresponding text in a different language (e.g.,

French to English). Finally, a text-to-speech (TTS) syn-

thesis system generates speech based on this translation.

Speech Recognition

State-of-the-art automatic speech recognition (ASR)

systems employ hidden Markov models (HMM) to rec-

ognize words from an acoustic signal [1]. HMMs are a

method of statistical modeling for systems assumed to be

Markov processes with unobservable state. An HMM can

take a set of observations (the acoustic signal, in this case)

and model the probabilities of observations given pos-

sible underlying unobservable states (the words uttered

in the acoustic signal) and the probabilities of sequences

of unobservable states. These models are developed using

training data that provides the basis for developing the

statistical distributions representing both the observation

and transition probabilities.

The search for W*, the translated word or message,

(a process called decoding) is performed by taking an

acoustic signal (a set of observations) and computing

the most likely sequence of underlying words that would

have generated the observed acoustic signal. This process

combines the probability of a word generating an observa-

tion and the probability of a word following a particular

sequence of words.

In general, ASR systems can be defined by the fol-

lowing equations:

 WW WW WWWW* argmax (|) ()= P o P

and

P P w
i

N
w wi i i n() (| ...) ,WW ≈

−
∏ − − −
1

1 1

where P(o|W) denotes a probabilistic function that mod-

els W to the acoustic observations o (typically called the

acoustic model) and P(W) is the probability of generating

the current word w given prior words (typically called the

language model).

Large-scale ASR systems can make use of millions of

parameters to model P(o|W) and P(W). As a result, the

search for W* can take significant computer resources.

Current systems, even heavily optimized, can use more

than ten times the real-time computer resources during

decoding when maximizing accuracy. Only smaller-scale

ASR systems can run on very limited computer resources

(e.g., cell phone processors such as the ARM7/9 series).

Furthermore, these systems can have a significant startup

time (i.e., in model loading and precomputation).

S2S applications can use both large- and small-

scale ASR, depending on the target application. For the

56 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 1, 2009

AdvocATe: A diSTRibuTed ARchiTecTuRe foR Speech-To-Speech TRAnSlATion

experimental systems described in subsequent sections,

we make use of an internally developed, large vocabulary

system as well as several commercial off-the-shelf (COTS)

systems. Lincoln Laboratory’s Information Systems Tech-

nology Group has developed MT systems; in this work, we

use them and a variety of COTS systems.

Machine Translation

Currently, the best MT systems use statistical models to

learn translations of source words into target words. This

process creates a large memorized table of translation

pairs, called a phrase table, which maps words from the

source language to the target language [2]. During trans-

lation, the best hypothesis T* is defined by:

 TT SS TT TT* argmax (|) () .= T P P

As with ASR, P(T) is a language model (typically mod-

eled via n-grams —multiple words that “go together”),

and P(S|T) is the phrase table (or translation model from

language S to language T). The modeling and decoding

processes for MT systems, aside from the nature of the

data itself, are parallel processes of training and decoding

an HMM. In large applications, the phrase table and lan-

guage model can consist of hundreds of millions or even

billions of entries. As a result, the search process used to

decode the best translation for a given input sentence can

be computationally expensive.

Text-to-Speech Synthesis

Speech synthesizers are used to convert text in the tar-

get language into a speech signal. Current systems use

either models of speech like those used for ASR (i.e.,

HMM-based text-to-speech) or explicit waveform chunks

from natural speech concatenated together to form the

output signal (i.e., concatenative text-to-speech) [3]. In

both cases, significant signal processing and search com-

plexity make these systems computationally demanding

(although generally less so than ASR or MT). For this

work, we employ COTS systems.

All components of an S2S translation system are

error prone. That said, different systems don’t necessar-

ily make the same errors. System combination attempts

to exploit this variation in errors by combining outputs

from multiple systems to create an improved hypothesis.

In recent years, MT research has focused on ways to either

select the most correct hypothesis from multiple systems

or integrate hypotheses from multiple systems to create

a more correct hypothesis than created by any individual

system. Most combination methods rely on consensus

between systems to decide correctness.

Existing Frameworks

A number of frameworks have been developed to address

the need for building large-scale distributed applica-

tions, and S2S translation systems in particular. While

these frameworks attempt to address some of the same

challenges as Advocate, their focuses diverge from Advo-

cate’s in ways described later in this article. Some existing

frameworks and their notable features are listed below.

UIMA. Originally developed by IBM, Unstructured

Information Management Architecture (UIMA), now

distributed open source by Apache, is a large-scale archi-

tecture designed for analysis and search [4]. Easily adapt-

able to speech translation applications, this architecture is

designed to be extensible, yet because of its applicability

to a wide array of applications, it requires a significant

amount of overhead in terms of up-front programming

to customize applications. This overhead is necessary to

support any sort of information management. Of particu-

lar note is the fact that this framework, like the others to

be described, operates in discrete units, producing one

output for every input. This processing paradigm is not

conducive to real-time processing/applications.

Galaxy. Developed by the Spoken Language Systems

Group at MIT’s Computer Science and Artificial Intelli-

gence Laboratory, Galaxy is a hub-and-spoke style archi-

tecture designed specifically for speech applications [5].

Its central hub is programmable and defines the flow of

data among servers running computationally expensive

speech/language processing components. The central

hub, meant to be a lightweight client, also keeps track of

the conversation state and history in the speech applica-

tion. This architecture requires that data be forwarded by

the central hub, increasing the overhead associated with

data transfer between servers and the hub, or the client,

when operating in real time.

OpenAgent. OpenAgent, developed by SRI Interna-

tional, is a research framework that provides software ser-

vices in a distributed environment [6]. In this framework,

services (called agents) register with clients (called facili-

tators). Using registered agents, facilitators can process

requests from users. The framework does not assume that

 VOLUME 18, NUMBER 1, 2009 n LINCOLN LABORATORY JOURNAL 57

A. RyAn AminzAdeh And WAde Shen

agents will be constantly available (i.e., some may unreg-

ister, new agents may join at any time). Thus, facilitators

dynamically recompute the set of needed services and the

data flow needed to satisfy a user’s request.

Unlike Advocate, the data flows between services

are not statically defined. Instead a user requests defined

“goals” that a facilitator can satisfy using existing agent

resources. OpenAgent also differs in that services register

with a predefined set of clients (instead of the dynamic

service discovery used in Advocate). Resource manage-

ment and load balancing are not explicitly implemented,

though it might be possible to do these processes through

extension to the existing framework.

GATE. GATE, or General Architecture for Text

Engineering, an open-source infrastructure for human-

language technology, was developed at the University of

Sheffield [7]. Services, called modules in the GATE archi-

tecture, are either wrapped natural-language processing

(NLP) components or objects developed from scratch

using the architecture’s API. GATE is based completely

on Java and focuses, much like UIMA, on annotation-

based storage and passing of data, implying synchronous,

one-in-one-out operation on discrete elements. As of ver-

sion 2, GATE’s processing resources are not distributed or

parallel—all execution is done locally. This structure dif-

fers from Advocate’s distributed, asynchronous, real-time

processing structure. GATE also differs from Advocate in

its constraints on input/output between modules, which

include required byte offsets and adherence to a particu-

lar annotation model, as opposed to Advocate’s format-

agnostic data-passing paradigm.

JAVA/RMI and Jini. Unlike the frameworks listed

above, Jini is a general-purpose architecture for distributed

computation (i.e., not specifically developed for speech/

language applications) [8]. Originally developed by Sun

Microsystems for use with Java [9], Jini is an architec-

ture developed for building service-oriented applications

in dynamic settings. Like Advocate, Jini supports service

discovery and remote access to computer resources (via

remote method invocation or RMI). Asynchronous com-

munication can happen in this framework via events.

Jini differs with Advocate in several ways. The basic

paradigm that Jini employs allows clients to both access

services and act as services themselves for other clients.

Furthermore, Jini is restricted in its communications

protocols, employing RMI, which is strictly Java-based.

Advocate’s employment of Extensible Markup Language-

Remote Procedure Call (XML-RPC) for communications

among services and clients allows it to span across more

varied environments [10].

The Advocate framework
To restate, Advocate is a set of communications APIs and

service wrappers that enable existing software components

to be combined into a single application with minimal

communications and processing overhead. Like the prior

frameworks, Advocate was designed to combine exist-

ing speech processing components. In contrast to these

systems, however, Advocate supports real-time stream-

ing operation and an asynchronous processing model.

It also allows for flexible data passing between different

processing modules to support various applications; for

example, both UIMA-style annotations and Galaxy-style

constraint-based routing can be implemented by extend-

ing Advocate classes, as well as. Furthermore, Advocate is

intended to be more portable, easier to use, and scalable

to large, high-throughput applications.

The architecture consists of an Advocate client appli-

cation described by a list of required services, which, in

this case, are speech and language processing components,

and the required flow of data between them. Services can

be configured by the client to return both data and meta-

data to the client after each stage of processing.

Advocate can work with existing grid/cloud infra-

structures, such as Sun Grid Engine or Hadoop. In the case

of nonpersistent services (services that are constructed

and torn down on a per request basis), scheduling can be

done via grid services while interprocess communication

is handled by Advocate. When services need to be persis-

tent because of high startup costs, grid resources can be

allocated at startup by Advocate.

Dynamic Service Discovery

Advocate provides automatic discovery and registration

of its services. To this end, we use Bonjour, a public COTS

implementation of the Internet Engineering Task Force

Zero Configuration Networking (ZeroConf) group. Bon-

jour works much in the same way as the domain name ser-

vice (DNS) once services are registered. Each client runs a

special process called the multicast DNS responder that

acts as a local registry of existing services. As each service

starts, it registers with all available multi-DNS (mDNS)

58 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 1, 2009

AdvocATe: A diSTRibuTed ARchiTecTuRe foR Speech-To-Speech TRAnSlATion

responders via a user datagram protocol (UDP) multicast

message that contains its Internet protocol address, port

information, a service-type descriptor, and information

regarding the server’s current load (used by the client to

select minimum latency services).

Clients continually browse the registry in their

respective mDNS responders for new services that come

online. As services join or leave, the registry is updated

in real time, as shown in Figure 1. Multiple clients can be

deployed at any one time, each with its own unique mDNS

responder. Similarly, multiple instances of a given type of

service can be running at the same time, each broadcast-

ing its own unique address and/or port number to all the

mDNS responders listening for UDP broadcasts. Since

the purpose of this architecture is to construct distrib-

uted systems built from remote components, the service

discovery protocol includes mechanisms for traversing

network address translation devices, such as routers, that

bridge different private networks. This capability allows

for maximum flexibility.

Clients and Services

In Advocate, clients define a data processing data flow

graph (DFG) that consists of multiple services. DFGs can

be arbitrarily directed acyclic graphs defining the data

flow between services. Using a DFG, each advocate acts

as a data processor employing services, ingesting data,

and producing output results, along with any by-products

that are requested.

Each instance of an Advocate client, shown in Figure

2, is a separate process that runs with a companion mDNS

responder (handling the service registry as described

above). At their core, Advocate clients implement an

XML-RPC client with code to define how the client del-

egates tasks to services, as well as a ResultHandler

with an XML-RPC server, which handles asynchronous

responses from services once their processing has com-

pleted. This module also defines, in code, how processed

results are handled. Clients can be easily customized by

overriding these modules.

Services in Advocate are data processors. They receive

requests from clients (either directly or indirectly for-

warded through other services) and process data associ-

ated with them. Communications happen in a streaming

fashion: (1) clients open streams to services, (2) clients

write to that stream, and (3) clients close the stream.

Results from services are produced asynchronously

and returned to the client via RPC calls to the client’s

ResultHandler. A more detailed Advocate operation

procedure follows:

1. Client opens stream to first service.

2. Client sends request to the first service, which

writes data to the stream and specifies whether

output/metadata ought to be returned to the cli-

ent when the service produces a result.

3. Service processes data.

4. When a result is generated, the service con-

tacts the client, returning output/metadata if

they had been requested. The service then asks

whether/where to forward data.

5. The client responds, telling the service whether

to forward its data and, if so, the destination.

6. If service is told to forward data, it writes the

data to the queue of the next service, opening

that service as needed.

Client 1

Client n

Advocate

Code

Name/Type IP address Port
mDNS responder

Broadcast
registration message

Advocate
service 1

Advocate
service n

fiGuRe 1. Advocate services apply user data protocol
broadcast messages to register their name/type, Internet
protocol address, and port number with the multi-domain
name server (mDNS) responder sitting on the Advocate
client’s machine.

 VOLUME 18, NUMBER 1, 2009 n LINCOLN LABORATORY JOURNAL 59

A. RyAn AminzAdeh And WAde Shen

Services can handle multiple streams from multiple

clients simultaneously. Each stream is associated with a

data queue and data processing thread. As data are written

to this queue, algorithm code is invoked in the data pro-

cessing thread. If results and/or metadata are generated,

they are queued to corresponding output and metadata

queues respectively. This queuing is shown graphically

in Figure 3.

Unlike the hub-spoke model (as found in the Gal-

axy program, for instance), the client does not receive

results produced by services unless they are needed.

This feature minimizes communications overhead

and client load. The overall communication pattern is

shown in Figure 4 for a linear, three-service example.

Building Services

Two distinct methods exist for creating Advocate services

from compute algorithms:

1. Light service wrappers that run compute algo-

rithms as separate processes. These are useful for

rapid prototyping using preexisting binaries and

in cases where the source code is not available.

2. Tightly-coupled, link-time library interfaces

that call compute algorithms directly.

In both cases, the resulting service appears to have the same

interface to clients, and both types of services are available

to clients either locally or as distributed services.

fiGuRe 2. An active registry of available Advocate ser-
vices is maintained throughout, with an XML-RPC client
making requests to route data, an XML-RPC server receiv-
ing and handling data, and an mDNS responder running as
separate processes.

mDNS
responder

XML-RPC client

Client code

XML-RPC server

Result handler

Client 1
Threads

Client 2

Client 1
result handler

Client 2
result handler

Client n
result handler

Algorithm
code

Client n

fiGuRe 3. An XML-RPC server receiving data and algo-
rithm codes that can be run in multiple threads, each with its
own data queue, allows multiple deployments of a service.

Advocate

Da
ta

Service 1 Service 2 Service 3Data

Fo
rw

ar
din

g
Lo

ca
tio

n

Metadata

M
eta

da
ta

Metadata &

result data

Forwarding
Location

Data

fiGuRe 4. Advocate client-to-service communications avoid data transport overhead by having
data forwarded between services, allowing the client to act as a mediator, designating where the
data should go. Data and metadata are only sent to the client when specifically requested.

60 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 1, 2009

AdvocATe: A diSTRibuTed ARchiTecTuRe foR Speech-To-Speech TRAnSlATion

fiGuRe 5. Advocate service wrappers are designed to require as little work as possible on the
system designer’s end. Mechanisms to customize service startup tasks, Remote Procedure
Call (RPC) specifications, and component interfacing are built into the code.

/**
 * Service Wrapper for MIT/LL MT Service
 */
public class MTService extends AdvocateService {
 /**
 * Main Entry point for this service
 */
 public static void main(String [] arg) throws Exception {
 MTService service = new MTService (Integer to Value(arg[0])) ;
 }
 /**
 * The constructor for local interfacing
 */
 public MTService () {
 super ()
 // ... do service-specific init for local interfacing
 }
 /**
 * The constructor for service initialization
 */
 public MTService(int xmlrpcPort) throws Exception {
 super (”MTService”, xmlrpcPort);
 // ... do service-specific init for RPC interfacing
 }
 /**
 * Thread to process requests (asynchronously)
 */
 private class MTRunServiceThread extends RunServiceThread {
 private MTRunServiceThread (AdvocateRequest request) {
 super(request);
 }
 void runWrapper() {
 synchronized(inputLock) {
 byte [] inputContent = inputContentQueue.removeFirst();
 }
 // ... do processing here
 synchronized(outputLock) {
 outputContentQueue.add(output);
 outputMetadataQueue.add(metadata);
 }
 }
 }
}

XML-RPC

Data

Data

Data

Data

Data

Data

Data

Data

HTTP
XMLXML

fiGuRe 6. XML-RPC allows data to be transferred via remote procedure calls using HTTP.
This transfer of data over Transmission Control Protocol gives Advocate its distributed computing
capabilities (figure adapted from [10]).

 VOLUME 18, NUMBER 1, 2009 n LINCOLN LABORATORY JOURNAL 61

A. RyAn AminzAdeh And WAde Shen

examples of how services can be configured in Advocate

clients. The upper pipeline is a simple S2S application.

The lower figure shows a more complicated S2S applica-

tion in which multiple MT systems are fused to produce

a single output.

In the case of S2S translation, often the data flows

are linear or near linear (e.g., speech recognition followed

by MT). As this pipeline-like structure is quite common,

the default implementation of the Advocate client sup-

ports a simple XML descriptor interface to describe these

pipelines with optional fields where the user can specify

which components return their output and any metadata

back to the client. An example of this descriptor format is

shown in Figure 8.

As previously stated, many existing S2S systems

require more complex, nonlinear operational capa-

bilities. Advocate allows the user to, with little effort,

override the default linear data flow. In this case, cli-

ents, given an arbitrary data flow graph, must compute

a topological sort to create a partial order of services,

resulting in an ordered list containing sets of services

that can be performed in parallel. Each set is then dis-

patched in order, and results are transmitted between

services as defined by the data flow graph. Facilities for

sorting, dispatching, and forwarding are built into the

Advocate client library and can be customized by the

application designer.

Scheduling and Resource Contention

By design, multiple instances of the same Advocate ser-

vices can be running on a computer farm and accessible

Light service wrappers, written in Java, can be used

to interface components that are set up and run via com-

mand line calls by encapsulating these commands in a

structure compatible with Advocate’s API. This process is

relatively simple, and a template for building these types

of services is shown in Figure 5.

Tightly coupled libraries can be used to directly make

Advocate API calls from the source code of the compo-

nent itself. This approach yields maximum flexibility and

control over the interface between the component and

its service functionality in the context of Advocate, but

requires that the source code for the component itself be

readily available.

Platform-Independent Communications: XML-RPC

Advocate is designed to be platform neutral with sup-

port for communications between clients and services

of different architectures. To this end, we use a standard

XML-RPC approach, shown in Figure 6, for all commu-

nications. XML-RPC uses the hypertext transfer protocol

to transport transmission-control protocol messages with

XML encoding between computers, allowing for remote

procedure calls with complex data-structure transport.

Services and clients within the Advocate framework act

as XML-RPC servers and clients respectively.

Data Flow Graphs

An Advocate client defines a data flow graph that gov-

erns when and how data are passed between services for

processing. This is a directed acyclic graph describing the

dependencies between different services. Figure 7 shows

fiGuRe 7. In the top example of Advocate applications, there is a linear pipeline for data flow, with each service oper-
ating serially on the previous service’s results. Shown on the bottom is a corresponding nonlinear pipeline for data flow,
where the machine translation (MT) combiner must wait for three MT services, processing in parallel, to complete their
processing and forward their results. When there are multiple MTs, the parallel process is more efficient and faster.

Speech
recognition

Machine
translation 1

Machine
translation 2

Machine
translation 3

Machine
translation
combination

Speech
synthesis

Speech
recognition

Machine
translation

Speech
synthesis

62 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 1, 2009

AdvocATe: A diSTRibuTed ARchiTecTuRe foR Speech-To-Speech TRAnSlATion

to clients. During startup and while running, services

periodically report their loading and status to clients.

Clients use this information to determine which services

will minimize latency and, by default, they select services

using this criterion. Other, more fair, scheduling policies

are easy to implement in Advocate as the default behavior

can be overridden. Advocate services queue requests from

multiple clients, and data processing threads associated

with each client are scheduled, by default, on a first-come-

first-served basis. Again, this behavior is easily overridden

when customizing Advocate services.

Real-Time Streaming and Asynchronous Content

Advocate is designed to support streaming, real-time

operation. To this end, data are written to services by cli-

ents (and other services) as a stream, and services may

produce results asynchronously (i.e., one input may pro-

duce zero or many outputs) as described earlier. This

approach allows services to produce results as soon as

the input has been written (modulo processing latency).

As such, the framework does not introduce significant

latency in the process.

Consider the example, shown in Figure 9, in which

<advocate>
<content inputData=”/dev/audio-in” outputData=”/dev/audio-out”/>
<service destinationClass=”SpeechRecognition” returnContent=”false” returnMetadata=”true”/>
<service destinationClass=”MachineTranslation” returnContent=”false” returnMetadata=”true”/>
<service destinationClass=”TextToSpeech” returnContent=”true” returnMetadata=”true”/>
</advocate>

fiGuRe 8. This example of an XML file for describing an Advocate application specifies services in the pipeline and option-
ally indicates points where metadata ought to be returned to the client. This is the default description mechanism for Advo-
cate and applies to linear pipeline descriptions only.

fiGuRe 9. An asynchronous speech recognition service can generate output without requiring complete processing of the
input data. In this case, the highlighted (in gray) speech acts as a single input that generates multiple output words as soon
as they are recognized, without waiting for the entire input audio segment to be processed. This configuration allows a single
input to generate zero or many outputs.

 VOLUME 18, NUMBER 1, 2009 n LINCOLN LABORATORY JOURNAL 63

A. RyAn AminzAdeh And WAde Shen

a client has written the

highlighted region of audio

(360 ms) comprising the

words don’t and see to a

speech recognition service.

The recognition service can

produce the word don’t as

soon as it’s able to process

the first 160 ms of speech.

It will not need to wait until

the entire buffer has been

processed. In this mode,

when a service generates

results, it informs the client

actively via an RPC callback mechanism (i.e., calling the

client’s ResultHandler) as soon as possible.

Speech-to-Speech experiments with Advocate
In order to evaluate the performance of the Advocate

framework, we put together a demonstration Arabic-to-

English speech translation system using both internally

developed (Arabic speech recognition and MT) and COTS

components (Festival English TTS).

Using this system, we measured the latency incurred

by the Advocate framework when compared against the

sum of processing latencies for each service’s algorithm (i.e.,

the minimum achievable latency for this pipeline, given

the algorithms used with zero-framework latency). We also

measured the throughput limit of an Advocate system in

terms of its ability to pass data through a data flow graph in

which services are running on different computers.

System Latency and Overhead

In order to compute the latency introduced by the Advo-

cate framework, we measured the latency for each of the

algorithms in our linear data flow. The ideal latency of such

a linear data flow is simply the sum of each component

algorithm’s processing latency. The difference between the

ideal latency and the real latency of a system is the mar-

ginal latency. We measured the real latency for five audio

files of varying size, since we expected that the marginal

latency—the overhead associated with Advocate—should

increase with file size. The reason for this expectation is

that as file size increases, so does the time required for

encoding and decoding XML data transfers from the

XML-RPC communications protocol, file-system input

and output, and data transmissions across a network.

As we can see in Table 1 and Figure 10, the marginal

latency of the Advocate architecture increases linearly

with the file size being processed. The marginal latency

is a small percentage of the overall processing time when

you consider the data sizes being processed. In the real

case of a distributed environment with services on dif-

ferent processors, the marginal latency is only about 10%

of real-time audio duration. This latency can be further

optimized in future versions via compression methods,

particularly in the XML encoding schemes used to trans-

mit data among distributed services.

System Throughput

We measured the ability of the Advocate framework to

process data in a pipeline fashion under real-world net-

work conditions. The throughput of the system can then

be measured by the number of requests the framework

 Table 1: Advocate overhead and computational latency

 AuDIo fILe ReAL IDeAL MARgINAL
 DuRATIoN (S) LATeNCy (S) LATeNCy (S) LATeNCy (S)

 4 21.8 21.4 0.4

 8 25.8 25.0 0.8

 12 31.0 29.8 1.2

 16 36.5 35.0 1.5

 20 41.92 40 1.92

fiGuRe 10. The marginal latency associated with Advo-
cate processes is a linear function of the audio file duration.
The overhead is approximately 10% of the file size.

10 15 20 25
Audio file duration (s)

M
ar

gi
na

l l
at

en
cy

 (s
)

5

2.5

2

1.5

1

0.5

0
0

64 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 1, 2009

AdvocATe: A diSTRibuTed ARchiTecTuRe foR Speech-To-Speech TRAnSlATion

(in this system’s case, this was always the ASR) was used

as the initial delay in computing how many requests could

theoretically be processed per minute. The results of the

experiments are shown in Table 3.

As we can see, in both the idealized and actual cases,

throughput of the system decreases with the file size and

falls short of the expected throughput, given the known

latencies of the services for that size of data, whether it be

dependent or not. This result indicates that throughput is

lowered because of delays incurred during transmission of

data between services across a network, and these delays

increase when larger amounts of data are being transferred.

Performance, however, is fairly close to ideal. What these

results show us is that the costs incurred by Advocate are

minimal when the processing time of the services is longer

relative to the amount of data that need to be transferred.

On the other hand, using Advocate in a setting with large

amounts of data and very fast services is less than optimal

because of the relatively high overhead of data transfer

compared to very short service processing times.

can process in a fixed amount of time.

First, we measured Advocate’s through-

put under idealized conditions by setting up a

series of three dummy services (without algo-

rithm processing) that simply transfer input

data to the next service in a linear data flow

graph after holding the data for a fixed period

of 5 seconds each. Five seconds was chosen

because it is longer than the delay incurred

by the network in transferring the data, and

so the latency of the system is guaranteed to

be service-process-time bound. Each of the

three services ran on separate but identical

processor within the same subnet as the Advocate client.

Multiple Advocate clients were then configured to send

eighty identical requests (audio files of a given size) to the

pipeline. The average number of requests processed per

minute is then recorded as the throughput.

Under the idealized conditions, we expect that the

only delay incurred will be the fixed 5-second delay of the

first service, and therefore we would expect a constant

throughput of twelve requests per minute. This is because,

under these conditions, data of the same size passing

among identical services require the same amount of time

for processing at each stage; there are no bottlenecks due

to data transfers.

However, because of data passing delays across a

network, the actual throughput under these conditions

will vary with data size. Table 2 shows the results of

these experiments and the effects of varying data size on

throughput in the idealized case.

Next, we measured Advocate’s throughput under the

more realistic conditions of our Arabic S2S demonstration

system described earlier. Once again, the data

size was varied and eighty identical requests

were processed, with multiple clients making

requests. However, in this case the services are

not idealized; therefore, rather than a fixed

delay of 5 seconds, the processing delay, and

by extension the system’s expected through-

put, becomes a function of the data size as

well. To compute the expected throughput,

we averaged the processing time of each com-

ponent over the eighty trials for a given file

size and located the process with the longest

delay. This weakest link in the list of services

 Table 2: idealized Throughput Rates
 AuDIo fILe eXPeCTeD ACTuAL
 DuRATIoN THRougHPuT THRougHPuT
 (S) (RequeSTS/MINuTe) (RequeSTS/MINuTe)

 4 12.0 11.0

 8 12.0 10.67

 12 12.0 10.5

 16 12.0 10.0

 20 12.0 9.75

 Table 3: Realistic Throughput Rates
 AuDIo fILe eXPeCTeD ACTuAL
 DuRATIoN THRougHPuT THRougHPuT
 (S) (RequeSTS/MINuTe) (RequeSTS/MINuTe)

 4 3.22 3.17

 8 2.46 2.40

 12 1.99 1.95

 16 1.62 1.59

 20 1.38 1.37

 VOLUME 18, NUMBER 1, 2009 n LINCOLN LABORATORY JOURNAL 65

A. RyAn AminzAdeh And WAde Shen

deployment plans
Internally, Advocate has been demonstrated on clusters

of 100+ CPUs. Our testing indicates that latency due to

the framework and network communications combined is

fairly minimal, and that this framework, therefore, could

be scaled to much larger processing grids without increas-

ing network bandwidth.

The Advocate system has been deployed to testbeds

at the Air Force Research Laboratory with 200+ CPUs

where researchers are evaluating and using a number of

COTS and government off-the-shelf (GOTS) ASR/MT/

TTS systems for government S2S applications. Advocate

combines these systems to create processing data flow

graphs that may someday support applications such as

coalition communications (e.g., NATO forces communi-

cating cross lingually), document translation, and cross-

lingual information search.

The Army’s Sequoyah program could potentially use

Advocate as a framework for a testbed to evaluate GOTS

components. As Lincoln Laboratory has a role in test and

evaluation, several prototype S2S translation systems with

in-house technologies will be used to design metrics and

evaluation procedures. Details of this effort are described

in the companion article in this issue.

Other applications of Advocate include large-scale,

real-time speech processing for voice search applications.

For example, libraries may want to create searchable indi-

ces of news broadcasts from multiple simultaneous chan-

nels. In these applications, a large computer infrastructure

is typically built to run speech recognition technologies

and build large database indices for later searching. In

this type of application, Advocate can be used to com-

bine speech recognition services with database engines

to perform indexing. Multiple Advocate clients can work

in parallel to index multiple channels.

Since Advocate was designed to be a general-purpose

framework, many applications requiring distributed, real-

time services can be built quickly and efficiently by using

nonparallel COTS/GOTS components. In the coming

months, we will be working with existing government

sponsors to develop some of these applications. As we

continue to test and refine Advocate, we intend to release

versions to a wider community of developers. n

RefeRenceS

1. L. R. Rabiner and B. H. Juang, “An Introduction to Hidden
Markov Models,” IEEE ASSP Mag., vol. 3, no. 1, 1986, pp. 4–16.

2. P. Koehn, F. J. Och, and D. Marcu, “Statistical Phrase-Based
Translation,” NAACL ‘03: Proc. 2003 Conf. N. Amer. Ch. Assoc.
Comp. Ling. on Human Lang. Tech., vol. 1, 2003, pp. 48–54.

3. P. Taylor, A.W. Black, and R. Caley, “The Architecture of the
Festival Speech Synthesis,” Proc. Third ESCA/COCOSDA
Wkshp. Sp. Syn., Blue Mountains, NSW, Australia, Novem-
ber 26-29, 1998, pp. 147–151.

4. D. Ferrucci and A. Lally, “UIMA: an Architectural Approach
to Unstructured Information Processing in the Corporate
Research Environment,” Nat. Lang. Eng., vol. 10, no. 3-4,
2004, pp. 327–348.

5. S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue,
“Galaxy-II: A Reference Architecture for Conversational Sys-
tem Development,” Proc. 5th Int. Conf. Spok. Lang. Process.
(ICSLP), 1998, pp. 931–934.

6. D.B. Moran, A.J. Cheyer, L.E. Julia, D.L. Martin, and S. Park,
“Multimodal User Interfaces in the Open Agent Architec-
ture,” Knowl.-Based Sys., vol. 10, no. 5, 1998, pp. 295–303:
also published in Proc. 2nd Int. Conf. on Intel. User Inter-
faces, 1997, pp. 61–68.

7. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan,
“GATE: A Framework and Graphical Development Environ-
ment for Robust NLP Tools and Applications,” Proc. 40th
Ann. Mtg. Assoc. Comp. Ling., 2002.

8. http://www.jini.org.
9. http://www.java.com.
10. http://www.xmlrpc.com.

AbouT The AuThoRS

A. Ryan Aminzadeh is an associate staff
member of the Information Systems Tech-
nology Group, where his current areas of
research are speaker identification and
machine translation. He received his bach-
elor’s and master’s degrees in electrical
engineering from the University of Pennsyl-
vania. He is a member of Tau Beta Pi and
Eta Kappa Nu.

Wade Shen is a staff member of the Infor-
mation Systems Technology Group. His
areas of research involve machine transla-
tion and machine translation evaluation;
speech, speaker, and language recognition
for small-scale and embedded applications,
named-entity extraction, and prosodic mod-
eling. Shen received his bachelor’s degree
in electrical engineering and computer

science from the University of California, Berkeley, and his master’s
degree in computer science from the University of Maryland, Col-
lege Park. Prior to joining Lincoln Laboratory, Shen helped found
and served as Chief Technology Officer for Vocentric Corporation,
a company specializing in speech technologies for small devices.

