Project Report ATC-81

Uplink Coverage Measurements in the Los Angeles Area for Passive BCAS

F. Nagy, Jr.

7 November 1977

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Lexington, Massachusetts

Prepared for the Federal Aviation Administration, Washington, D.C. 20591

This document is available to the public through the National Technical Information Service, Springfield, VA 22161

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

			lechnical Report						
1. Report No.	2. Government Acce	ssion No.	3. Recipient's Catalog	No.					
FAA-RD-77-134	1								
· ·									
4. Title and Subtitle			5. Report Date	077					
Uplink Coverage Measurements	in the Los Angeles.	Area	7 November 1						
for Passive BCAS		•	6. Performing Organizat	tion Code					
7. Author(s)			8. Performing Organizat	ion Report No.					
F. Nagy, Jr.			ATC-81						
				. <u></u>					
9. Performing Organization Name and Addre			10. Work Unit No. Proj. No. 052-	-141 04					
Massachusetts Institute of Techr Lincoln Laboratory	lology								
P.O. Box 73			11. Contract or Grant N						
Lexington, Mass. 02173			DOT-FA77-WAI727						
····			13. Type of Report and I	Period Covered					
 Sponsoring Agency Name and Address 									
Department of Transportation			Project Repor	t					
Federal Aviation Administration									
Systems Research and Developm Washington, D.C. 20591	ient Service		14. Sponsoring Agency (Code					
			<u>l</u>						
15. Supplementary Notes			-						
The work reported in this docum	ent was performed	at Lincoln Laborator	y, a center for research	ch operated by					
Massachusetts Institute of Techn F19628-78-C-0002.	lology, with the sup	port of the Department	it of the Air Force and						
16. Abstract									
Uplink (1030 MHz) m by the Airborne Measure landings and take-offs at are relevant to current in and include: (1) the inter and other interrogators; and (4) the availability of tracking.	ment Facility of the the LAX, Van Nuys, nvestigations of pass crogator environmen (3) its dependence o P2 pulses of suffici rogators was found per 1000 ft. P2 puls	, and San Diego airpo sive beacon-based col at as received; (2) its n aircraft height duri ent strength for PRF to increase with the a	ratory during normal rts. The data presente llision avoidance syste division between FAA ng landings and take-of (pulse repetition freque aircraft height at the	ns , ffs; ency) rate					
Uplink (1030 MHz) m by the Airborne Measure landings and take-offs at are relevant to current ir and include: (1) the inter and other interrogators; and (4) the availability of tracking. The number of intern of 2.5 to 3 interrogators at LAX, and lower at San	ment Facility of the the LAX, Van Nuys, nvestigations of pass crogator environmen (3) its dependence o P2 pulses of suffici rogators was found per 1000 ft. P2 puls	M.I.T. Lincoln Labor, and San Diego airpor sive beacon-based col at as received; (2) its n aircraft height duri ent strength for PRF to increase with the a	ratory during normal rts. The data presente llision avoidance syste division between FAA ng landings and take-of (pulse repetition freque aircraft height at the b be feasible down to 20	ns , ffs; ency) rate					
Uplink (1030 MHz) m by the Airborne Measure landings and take-offs at are relevant to current ir and include: (1) the inter and other interrogators; and (4) the availability of tracking. The number of intern of 2.5 to 3 interrogators at LAX, and lower at San 17. Key Words ATCRBS Landings	ment Facility of the the LAX, Van Nuys, nvestigations of pass crogator environmen (3) its dependence o P2 pulses of suffici rogators was found per 1000 ft. P2 puls	M.I.T. Lincoln Labor, and San Diego airporsive beacon-based colut as received; (2) its n aircraft height duri ent strength for PRF to increase with the a e tracking appears to	ratory during normal rts. The data presente llision avoidance syste division between FAA ng landings and take-of (pulse repetition freque aircraft height at the b be feasible down to 20	ns , ffs; ency) rate					
Uplink (1030 MHz) m by the Airborne Measure landings and take-offs at are relevant to current in and include: (1) the inter and other interrogators; and (4) the availability of tracking. The number of intern of 2.5 to 3 interrogators at LAX, and lower at San 17. Key Words ATCRBS Landings Los Angeles Area Interrogat	ment Facility of the the LAX, Van Nuys, nvestigations of past rogator environmen (3) its dependence o P2 pulses of suffici rogators was found per 1000 ft. P2 puls Diego.	M.I.T. Lincoln Labor, and San Diego airporsive beacon-based colut as received; (2) its n aircraft height duri ent strength for PRF to increase with the a e tracking appears to 18. Distribution Stater Document i	ratory during normal rts. The data presente llision avoidance syste division between FAA ng landings and take-oi (pulse repetition freque aircraft height at the b be feasible down to 20 nent s available to the public	d ms ffs; ency) rate 000 ft.					
Uplink (1030 MHz) m by the Airborne Measure landings and take-offs at are relevant to current in and include: (1) the inter and other interrogators; and (4) the availability of tracking. The number of intern of 2.5 to 3 interrogators at LAX, and lower at San 17. Key Words ATCRBS Landings Los Angeles Area Interrogat Airports AMF (Air	ment Facility of the the LAX, Van Nuys, nvestigations of pas- rogator environmen (3) its dependence o P2 pulses of suffici rogators was found per 1000 ft. P2 puls Diego.	M.I.T. Lincoln Labor, and San Diego airporsive beacon-based colut as received; (2) its n aircraft height duri ent strength for PRF to increase with the a e tracking appears to 18. Distribution Stoter Document i the Nationa	ratory during normal rts. The data presente llision avoidance syste division between FAA ng landings and take-oi (pulse repetition freque aircraft height at the b be feasible down to 20 be feasible down to 20 nent s available to the public l Technical Informatio	d ms ffs; ency) rate 000 ft.					
Uplink (1030 MHz) m by the Airborne Measure landings and take-offs at are relevant to current in and include: (1) the inter and other interrogators; and (4) the availability of tracking. The number of intern of 2.5 to 3 interrogators at LAX, and lower at San 17. Key Words ATCRBS Landings Los Angeles Area Interrogat Airports AMF (Air Passive BCAS ment Fa	ment Facility of the the LAX, Van Nuys, nvestigations of pas- rogator environmen (3) its dependence o P2 pulses of suffici rogators was found per 1000 ft. P2 puls Diego.	M.I.T. Lincoln Labor, and San Diego airporsive beacon-based colut as received; (2) its n aircraft height duri ent strength for PRF to increase with the a e tracking appears to 18. Distribution Stoter Document i the Nationa	ratory during normal rts. The data presente llision avoidance syste division between FAA ng landings and take-oi (pulse repetition freque aircraft height at the b be feasible down to 20 nent s available to the public	d ms ffs; ency) rate 000 ft.					
Uplink (1030 MHz) m by the Airborne Measure landings and take-offs at are relevant to current in and include: (1) the inter and other interrogators; and (4) the availability of tracking. The number of intern of 2.5 to 3 interrogators at LAX, and lower at San 17. Key Words ATCRBS Landings Los Angeles Area Interrogat Airports AMF (Air	ment Facility of the the LAX, Van Nuys, nvestigations of pas- rogator environmen (3) its dependence o P2 pulses of suffici rogators was found per 1000 ft. P2 puls Diego.	M.I.T. Lincoln Labor, and San Diego airporsive beacon-based colut as received; (2) its n aircraft height duri ent strength for PRF to increase with the a e tracking appears to 18. Distribution Stoter Document i the Nationa	ratory during normal rts. The data presente llision avoidance syste division between FAA ng landings and take-oi (pulse repetition freque aircraft height at the b be feasible down to 20 be feasible down to 20 nent s available to the public l Technical Informatio	d ms ffs; ency) rate 000 ft.					
 Uplink (1030 MHz) m by the Airborne Measure landings and take-offs at are relevant to current in and include: (1) the inter and other interrogators; and (4) the availability of tracking. The number of intern of 2.5 to 3 interrogators at LAX, and lower at San 17. Key Words ATCRBS Landings Los Angeles Area Interrogat Airports AMF (Air Passive BCAS ment Fa 1030 MHz Measurements 	ment Facility of the the LAX, Van Nuys, nvestigations of pas- rogator environmen (3) its dependence o P2 pulses of suffici rogators was found per 1000 ft. P2 puls Diego.	M.I.T. Lincoln Labor, and San Diego airporsive beacon-based colut as received; (2) its n aircraft height duri ent strength for PRF to increase with the a e tracking appears to 18. Distribution Stoter Document i the Nationa Springfield	ratory during normal rts. The data presente llision avoidance syste division between FAA ng landings and take-oi (pulse repetition freque aircraft height at the b be feasible down to 20 be feasible down to 20 nent s available to the public l Technical Informatio	d ms ffs; ency) rate 000 ft.					
Uplink (1030 MHz) m by the Airborne Measure landings and take-offs at are relevant to current in and include: (1) the inter and other interrogators; and (4) the availability of tracking. The number of intern of 2.5 to 3 interrogators at LAX, and lower at San 17. Key Words ATCRBS Landings Los Angeles Area Interrogat Airports AMF (Air Passive BCAS ment Fa	ment Facility of the the LAX, Van Nuys, nvestigations of pass rogator environmen (3) its dependence o P2 pulses of suffici rogators was found per 1000 ft. P2 puls Diego.	M.I.T. Lincoln Labor, and San Diego airporsive beacon-based colut as received; (2) its n aircraft height duri ent strength for PRF to increase with the a e tracking appears to 18. Distribution Stater Document i the Nationa Springfield sif. (of this page)	ratory during normal rts. The data presente llision avoidance syste division between FAA ng landings and take-oi (pulse repetition freque aircraft height at the b be feasible down to 20 be feasible down to 20 nent s available to the publi l Technical Informatio , Virginia 22151.	d ms ffs; ency) rate 000 ft.					

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

2010

ಂಗ್ರಾಂಗ ಕಾರಾವರ್ಷಕೊಂಡಿದ

TABLE OF CONTENTS

Page

1.0	INTRO	DDUCTION	- 1
2.0	DATA	COLLECTION AND PROCESSING	- 2
3.0	PRINC	CIPAL RESULTS	- 5
	3.1	Interrogator Population	15
	3.2	Altitude Dependence	
	3.3	P2 Pulse Tracking	19
4.0	ADDII	IONAL RESULTS	19
	4.1	ECAC File Adjustments	19
	4.2	Unidentified Interrogators	21
	4.3	Environment Table Notes	21
5.0	CONCI	USTONS	37.

LIST OF FIGURES

Figure		Page
1	Aircraft flight path for LA and Van Nuys missions.	3
2	Aircraft flight path for San Diego mission.	4
3	Number of tracked interrogators as a function of height.	17
4	Number of interrogators tracked during landings and take-offs vs altitude.	18
5	Maximum power levels of received interrogations.	20
	(a) LAX mission (b) San Diego mission	
	LIST OF TABLES	-
Table 1	Los Angeles Take-off and Landing.	6

	No. of Interrogations received in 20 secs. (Tracked Interrogators Only).	
Table 2	Los Angeles Take-off and Landing. Estimated Angle of Arrival (deg). (Tracked Interrogators Only).	7
Table 3	Los Angeles Take-off and Landing. Largest Mainbeam Power Seen (dBm). (Tracked In- terrogators Only).	8
Table 4	Van Nuys Landing and Take-off. No. of Interrogations Received in 20 secs. (Tracked Interrogators Only).	9
Table 5	Van Nuys Landing and Take-off. Estimated Angle of Arrival (deg). (Tracked Interrogators Only).	10
Table 6	Van NuysLanding and Take-off. Largest Mainbeam Power Seen (dBm). (Tracked In- terrogators Only).	11
Table 7	San Diego Landing and Take-off. No. of Interrogations Received in 20 secs. (Tracked In- terrogators Only).	12

LIST OF TABLES (Continued)

Table 8	San Diego Landing and Take-off. Estimated Angle of Arrival (deg). Only).	(Tracked Interrogators	13
Table 9	San Diego Landing and Take-off. Largest Mainbeam Power Seen (dBm). Interrogators Only).	(Tracked	14

- Table 10Number of Tracked Interrogators (FAA and Other) as a Func-16tion of Height Above Ground.
- Table 11AMF-Measured Interrogator Parameters at Variance with 2-5-7622ECAC File.

1.0 INTRODUCTION

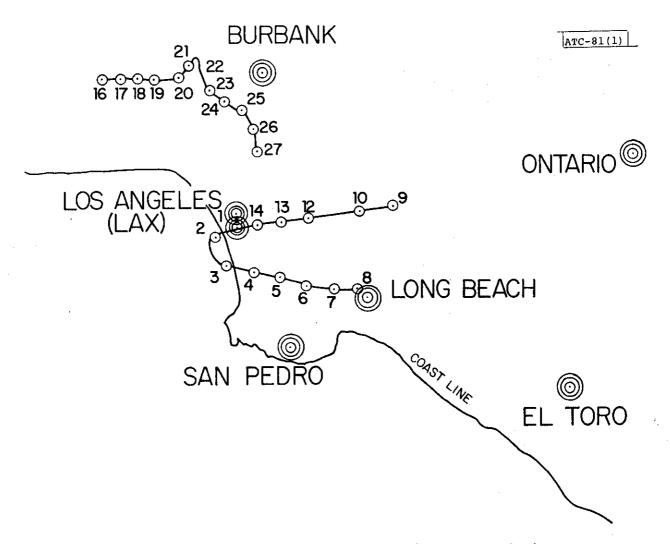
On 30 September and 1 October of last year (1976), Lincoln Laboratory's Airborne Measurement Facility^{*} (AMF) flew three missions of landings and take-offs in the LA area, one each at the Los Angeles International (LAX), Van Nuys, and San Diego airports. The missions were intended to answer a number of questions raised in connection with current investigations of passive BCAS (beacon-based collision avoidance systems^{**}):

- (1) How many interrogators make up the environment on 1030 MHz;
- (2) How are these divided between FAA (terminal and en-route) and other (mostly military) interrogators;
- (3) How does this environment depend on aircraft altitude during normal landings and take-offs; and
- (4) What is the power level of the P2 pulses received from each interrogator as a function of altitude, and are enough P2 pulses detectable to allow continuous tracking of the Pulse Repetition Frequencies (PRF's) of the local FAA interrogators.

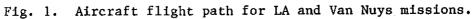
Most interrogators in an area interrogate at fixed rates (PRF's), differing from interrogator to interrogator. This allows the "tracking" of each interrogator, i.e., the separation of its interrogations from the sum total of interrogations received.

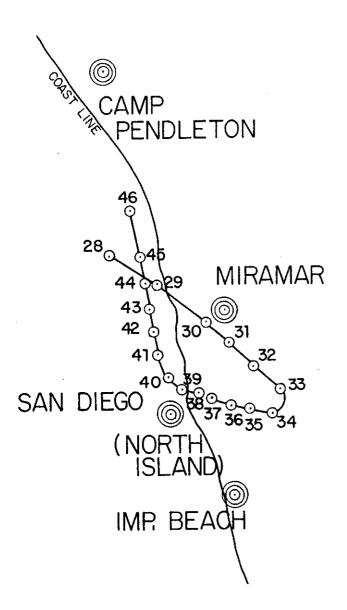
[&]quot;See Project Report ATC-60, 25 March 1976, "The Airborne Measurement Facility (AMF) System Description", G. V. Colby.

^{**} See Bagnall and Kay, "A Review and Analysis of the Litchford Collision Avoidance System," October 1976, FAA-RD-77-1.

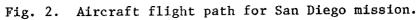

2.0 DATA COLLECTION AND PROCESSING

Figures 1 and 2 show the paths of the three AMF missions, superimposed on maps of the Los Angeles and San Diego areas. The maps are derived from the 1:500,000 Sectional Aeronautical Chart of the LA area, and indicate the principal interrogators observed in the data discussed below. Twenty seconds of data were recorded at each of the 46 aircraft positions shown. A receiver threshold of -74 dBm (referred to the AMF input^{*}) was used everywhere except at position 16, where the threshold was -80 dBm.


The AMF Uplink Data Analysis Program was then run on each data segment. This program assembles received pulses into interrogations and suppressions, and counts each of these for the data span (here 20 sec), as well as in a normalized fashion (per sec). The program has a pulse repetition interval tracker, which separates the interrogation environment into the individual contributions by the interrogators of an area. The tracker can handle both fixed PRI's and also the 8-pulse stagger of the ATCBI-4's associated with the ASR-7's. The range of fixed PRI's tracked by the program is 1800 to 7200 µs, corresponding to PRF values from 455 to 114 interrogations per sec.


For each tracked interrogator, the program calculates the PRF, the scan period, the mode interlace, the total number of interrogations received over a 20-sec period, the peak mainbeam power, and the average angle of arrival of the interrogations (accurate to \pm 30 deg.). Interrogations outside the range of fixed PRI's mentioned above, and those with PRI anomalies are not tracked, but are listed by the analysis program. Scan period, etc., may be determined

[&]quot;In these measurements, the cable loss between the antenna and the front end of the AMF was 4 dB.


÷

ATC-81(2)

for some of these by hand, if necessary. The results tabulated below, however, refer only to interrogators tracked by the analysis program.

3.0 PRINCIPAL RESULTS

The "Interrogator Environment Tables" (Tables 1 through 9) contain all the information necessary to answer the four questions posed in Section 1. The first three tables show positions 1 - 14, the next three, positions 15 - 27, and the last three, positions 28-46, i.e., they refer to landings and take-offs at LAX, Van Nuys, and San Diego, respectively. The twenty right hand columns of these tables always represent the same twenty interrogators (9 FAA and 11 other), tracked by the analysis program.^{*} The entries under the tracked interrogators alternate cyclically from table to table among:

- (a) Number of interrogations received in 20 sec;
- (b) Estimated angle of arrival of the interrogations;
- (c) Maximum mainbeam power observed.

The first table of each environmental triplet (showing the number of interrogations in 20 sec) gives this additional information:

- (a) Aircraft height above ground (HAG);
- (b) Total interrogations per sec;
- (c) Total suppressions per sec;
- (d) Total pulses seen by AMF per sec.

This organization of the Environment Tables makes it possible to determine the number of interrogations, their direction, and their maximum mainbeam

*The notation 4*12AC denotes a mode interlace pattern of 11112222AAAACCCCC.

		SCAN	HODE	NAME	PRF								السري بريد ا			السنجار			اليستين فسي
Γ		NONE	٨	. F	437.6		D££												
		10.9	4*2C	E	308.6		Take				<u> </u>		4 0 0						
ORS		3.77	4*12AC	D	224.6		R 25											Ì	
OTHER INTERROGATORS		3.80	4*12AC	с	335.9								1 2 2					, 1	
INTER		3.84	4*2AC	В	378.0			<u>.</u>						-					
HER		3.86	AC	Norton	273.9				59	82	54	49	39	3	26				
6		9.8	12AC	Camp Pendleton	292.1														
		5.6	4*12AC	A	242.7								<u></u>						
		11.2	4*12AC	San Diego	303.5				47	76	55	43	76	8	13				
		12.02	2*2ACA	San Clemente	334.9	7	8	64	48	85	68	8	5	89	8	9			
		9.67	1AC	San Nicolas	359.4		54	74	65	81	32	า	36	5	41	93	98		
Γ		4.72	AAC	Long Beach	337.1		26	46	17	16	55	64	62	8	8	22	47		
		4.67	AAC	Miramar	350.0					44			32	8					
		6.00	AAC	Burbank	375.3			58	۶	62	76	8	57	52	27	58			
TORS	X A.L	4.67	AAC	El Toro	390.2		53	53	\$	3	8	55	*	54	1 9	57	75		
RROGA	TERMINAL	4.67	AAC	Ontario	450.2	2			114	86	108	86	88	7	5	64			
FAA INTERROGATORS	F	4.65	AAC	LAXASR7	378.6		239	99	16	123	8	5	61	3	96	210	261		
FAA		4.67	AAC	LAX	405.2	28	147	52	106	73	86	62	ş	2	316	168	128	23	
	Ë	12.02	2ACA	Mt. Laguna	330.2				17		33	7	•	57	28				
	ENROUTE	12.00	2ACA	San Pedro	370.3		43	101	43	94	192	47	152	8	132	1130	5 287		
тс	TAL	PULSES	SEEN BY	AMF PER SP	:C	2291	2290	2663	3465	3740	3349	2786	2767	2600	2861	2861	2455	1726	
τ	TAL	SUPPR	ESSIONS	PER SEC		205	423	779	686	1029	1074	774	776	732	216	828	678	167	
τı	TAL	IAL INTERROCATIONS PER SEC					77	117	178	193	195	158	140	72	51	66	77	123	
A	AIRCRAFT HEIGHT ABOVE GROUND (FT)						1500	3200	4400	5700	6400	6400	7700	5700	3400	2600	2000	300	
-	AIRCRAFT POSITION							ñ	4	ŝ	ø	~	80	^	2	ា	13	14	

Los Angeles Take-off and Landing. No. of Interrogations Received in 20 sec. (Tracked Interrogators Only).

		Angeles Take-off and Landing.
Estimated	Angle	of Arrival (deg). (Tracked Interrogators
		Only).

		SCAN	MODE	NAME	PRF	1					•									
ſ	Ţ	NONE	•	F	437.6	Off							East							
		10.9	4#2C	E	308.6	Take							farthest						Land	
		3.77	4*12AC	D	224.6	R25						1	rar						R25	
TORS		3,80	4*12AC	с	335.9															
ROG		3.84	4*2AC	В	378.0															_
INTE		3.86	AC	Norton	273.9			94	95	90	98	98	5	2	7					
OTHER INTERROGATORS		9.8	12AC	Camp Pendleton	292.1		_													
		5.6	4*12AC	A	242.7															_[
		21.2	4412AC	San Diego	303.5			128	132	125	132	151	ļ	7/7	41					
		12,02	2*2ACA	San Clemente	334.9	203	176	184	186	187	200	204				802				
		9.67	1.40	San Nicolas	359.4	229	223	233	233	245	257	267	267			742	247			
F		4.72	AAC	Long Beach	337.1	128	112	115	611	611	110		0.5	217	5/T	601	143			
		4.67	AAC	Miramar	350.0				125			130	154	ĥ						
ORS		6.00	AAC	Burbank	375.3		17	T	ŝ	359	338	336	°		Î i	4				
ROGAT	NAL	4.67	AAC	El Toro	390.2	115	116	911	131	117	125	106	1 3 7	ì			3			
FAA INTERROCATORS	TERMINAL	4.67	AAC	Ontario	450.2			8	88	89	&	8	ă	5	2 8	8				
FAA		4.65	AAC	LAXASR7	378.6		:													
	ſ	4.67	AAC	LAX	405.2	56	18	345	316	292	302	318	Ę	040	575 275	, , , , , , , , , , , , , , , , , , ,	7			
	ENROUTE	12.02	ZACA	Mc. Laguna	330.2		120	132		119	134	8	2	۶	<u>}_</u>					
	BR	12.00	7464 1	San Pedro	370.3	175	130	162	183	208	280	245	24	126	200	001	2			
то	TAL	PULSES S	SEEN BY A	1F PER SEC									<u> </u>		•					
то	TAL	SUPPRI	ESSIONS J	PER SEC																
τυ	TAL	INTER	ROGATIONS	PER SEC																
A1	RCR	AFT HEIG	IT ABOVE	GROUND (F	r)															
		AIR	CRAFT POS	ITION		<u>л N</u>	m	4	5	\$	~	60	Ľ	10	11	1 2	}	14	يتتبني	

		SCAN	MODE	NAME	PRF	1													
ſ	T	NONE		r	437.6	OEE					`	East							
		10.9	4#2C	E	308.6	1ake						thest							
8		3.77	4*12AC	D ,	224.6	R25 :						Far					1	3	
OTHER INTERROCATORS		3.80	4*12AC	с	335.9														_
TERR		3.84	4*2AC	B	378.0														1
ER IN		3.86	AC	Norton	273.9			-5 5	-21	-52	-52	-58	-54	\$					1
OTH		9.8	12AC	Camp Pendleton	292.1														l
		5.6	4*12AC	•	242.7														
		11.2	4*12AC	San Diego	303.5			-57	-56	-61	-63	-53	-58	-68					ļ
		12.02	2*2ACA	San Clemente	334.9	-59	4	-58	-57	57	59	-57	-12	-55	Ŷ				l
		9,67	1AC	San Nicolas	359.4	-51	-66	-53	-63	-57	-66	-61	-57	-54	-54	-49			
	Ţ	4.72	AAC	Long Beach	337.1	-61	Ŧ	ŧ	\$	-42	-36	-37	\$	Ŧ	ŧ	\$			
		4.67	WVC	Miramar	350.0				1 <u>5</u>			-57	-59						l
		6.00	AAC	Burbank	375.3		-55	97	Υς-	55-	-58	-56	-5	\$	ភ				
TORS	NAL	4.67	AAC	El Toro	390.2	-73	-58	-50	-56	-54	-56	-53	-20	7	ŝ	-57			
FAA INTERROGATORS	TERMINAL	4.67	AAC	Ontario	450.2			-51	-53	-52	-35	-20	Ŷ	ę7	-56				
INTE		4.65	AAC	LAXASR7	378.6	-37	-35	-31	-37	-43	-43	-48	-52	9	-32	-33			Į
FAA		4.67	AAC	LAX	405.2	-33	- H	-31	-38	-38	7	Ŧ	997	7	-29	-35			
	UTE	12.02	ZACA	Mt. Laguna	330.2		_	-53		ę	ş	-62	-53	-58					
	ENROUTE	12.00	2404	San Pedro	370.3	-40	-32	-31	-29	-30	-41	-J.	-37	-38	-48	ş			
т	ſſĂĹ,	PULSES S	SEEN BY	MP PER SEC															ŀ
то	TAL,	SUPPRI	ESSIONS E	ER SEC															ľ
те	TAL.	INTER	ROGATION	S PER SEC															
AI	RCR	AFT HEIC	HT ABOVE	GROUND (F	()														
		AIR	CRAFT PO	SITION		10	m .	4	Ś	ø	~	8	<u>ъ</u>	3	7	ก:	74		i

1111

Los Angeles Take-off and Landing. Largest Mainbeam Power Seen (dBm). (Tracked Interrogators Only).

8

Van Nuys Landing and Take-off. Estimated Angle of Arrival (deg). (Tracked Interrogators Only).

		SCAN	HODE	NAME	PRF]	_					-							·. ·	
Γ	T	NONE	٨	F ·	437.6		West								loff					
		10.9	4*2C	E	308,6		aest					Land			Take) 	
		3.77	4*12AC	D	224.6		Farthest					216	Ì		97				Farthest	
TORS		3.80	4*12AC	с	335.9	L													Far	
ROCA		3.84	4*2AC	В	378.0	L								L						
INTE		3.86	AC	Norton	273.9					_									#	
OTHER INTERROGATORS		9.8	12AC	Camp Pendleton	292.1														.,	_
ľ		5.6	4*12AC	A	242.7															
		11.2	4*12AC	San Diego	303.5	Γ									_				9	
		12.02	2*2ACA	San Clemente	334.9	116	25	78	41	56						83	82	83	Ħ	
		9.67	1AC	San Nicolas	359.4	1/1	183	85	74	72						75	85	77	33	
٥		4.72	AAC	Long Beach	337.1	97	22	31			_		•			46	64	42	3	
ĺ		4.67	AAC	Miramar	350.0		_													
)KS		6.00	AAC	Burbank	375.3	77	108	62	67	8	95	107		7	147	66	95	107	62	
DCAT	NAL	4.67	AAC	El Toro	390.2	78	23	36	24	42	42				68	75			29	
FAA INTERROGATORS	TERMINAL	4.67	AAC	Ontario	450.2	102	24									7	20	88	78	
FAA I	ľ	4.65	AAC	LAXASR7	378.6	107	87	87	17	75					76	22	6)	5	143	
		4.67	AAC	LAX	405.2	150	107	76	33	125				ŀ	105	118	61	00 T	68	
	ULE	12.02	2 ACA	Mt. Laguna	330.2												.	88	ถ	
	ENROUTE	12.00	2ACA	San Pedro	370,3	18	154	102	90T	66	12	14			2	46	ĸ	48	. 5	
то	TAL.	PULSES	SEEN BY A	MF PER SEC	;	2441	4125	666	1071	1373	565	766		531	L644	2340	2293	2646	2772	
τo	TAL	SUPPR	ESSIONS F	ER SEC		835	961	202	325	30 361	187	327		175	564	835	737	889	886	
то	TAL	INTER	ROGAT LONS	S PER SEC		44	8	35	42	ጽ	9	4		Ŷ	28	39	43	ŝ	106	
AI	RCR	AFT HEIG	HT ABOVE	GROUND (F	T)	3600	3600	3000	2900	2500	1700	800		500	1700	2800	3800	3800	3800]
		AIR	CRAFT PO	SITION		15	91	17	18	67	20	21		22	23	24	25	26	27	J

9

Van Nuys Landing and Take-off. Estimated Angle of Arrival (deg). (Tracked Interrogators Only).

		SCAN	HODE	NAME	PRF	1					•							
Γ	T	NONE	A	P	437.6		ies t											
		10.9	4#2C	E	308.6		est					Land	0ff					SE
		3.77	4*12AC	D	224.6		Farthest					R16	Take Off					hest
OTHER INTERROGATORS		3.80	4*12AC	С	335.9								EL6					Fart
TERRO		3.84	4#2AC	В.	378.0													
R LN		3.86	AC	Norton	273.9					_								88
O'THE		9.8	12AC	Camp Pendleton	292.1						<u></u>							
		5.6	4*12AC	A	242.7													
		11.2	4*12AC	San Diego	303.5											1		136
		12.02	2*2ACA	San Clemente	334.9	179	164	140	150	149					154	152	154	147
		9.67	1 A C	San Nicolas	359.4	206	192	195	224	210					206	193	196	208
		4.72	AAC	Long Beach	337.1	125	105	118	•						120	130	145	139
		4,67	AAC .	Miramar	350.0													
		6.00	AAC .	Burbank	375.3	17	53	73	92		76	62	8		46	77	351	67E
INTERROCATORS	TYN	4.67	AAC	El Toro	390.2	118	85	100	96	108	92			123	123		128	6 1
ERRO	TERMINAL	4,67	AAC	Ontario	450.2	81	66					·			95	16	88	&
FAA ENT		4.65	AAC	LAXASR7	378.6													
FA		4.67	AAC	LAX	405.2	133	114	93	108	114		· . <u>-</u> .		128	138	051	153	159
	Щ	12.02	2ACA	Mt. Laguna	330.2												136	132
	ENROUTE	12.00		San Pedro	370.3	141	120	116	112	137	136	154		129	131	L43	146	141
ro	TAL	PULSES S	SEEN BY	AMF PER SE	c							<u></u>						
то	TAL	SUPPRI	SSIONS	PER SEC					_									
10	TAL	INTERI	ROGATIONS	PER SEC														
AI	RCR	APT HEIG	T ABOVE	GROUND (FI	()								 			<u></u>		
		AIR	CRAFT POS	SITION		15	9T	17	18	51	20	7	53	23	24	55	36	21

Van Nuys Landing and Take-off. Largest Mainbeam Power Seen (dBm). (Tracked Interrogators Only).

		SCAN	MODE	NAME	PRF	·
Γ		NONE	٨	F	437.6	
		10.9	4*2C	Е	308.6	Kies t SE
5		3.77	4*12AC	D	224.6	Farthest West R16 Land Farthest SE Farthest SE
OTHER INTERROCATORS		3.80	4*12AC	С	335.9	Fart R16 Far
LERRO		3,84	4*2AC	B	378.0	
R IN		3,86	AC	Norton	273.9	-67
OTHE		9.8	12AC	Camp Pendleton	292.1	
		5.6	4#12AC	A	242.7	
		11.2	4*12AC	San Diego	303.5	- 26
		12.02	2*2ACA	San Clemente	334.9	-56 -63 -71 -71 -71 -57 -57 -57 -55 -55
		9.67	1AC	San Nicolas	359.4	-52 -67 -67 -67 -57 -52 -52 -52 -62
Γ		4.72	AAC	Long Beach	337.1	-63 -73 -75 -52 -58 -51 -51 -51 -51 -51
		4.67	AAC	Miramar	350.0	
ATORS		6,00	ANC	Burbank	375.3	
ERROC	N.A.L	4.67	AAC .	El Toro	390.2	-58 -67 -74 -74 -75 -75 -75 -55 -55 -55 -55 -55 -55 -55
FAA INTERROGATORS	TERMINAL	4.67	AAC	Ontario	450.2	-56 -72 -61 -56 -51 -51
FA		4.65	AAC	LAXASR7	378.6	-43 -55 -66 -66 -68 -68 -46 -46 -46 -46 -46
		4.67	AAC	LAX	405.2	
	Ë	12,02	ZACA	Mt. Laguna	330.2	- fé 2 - 59
	ENROUTE	12.00	2 ACA	San Pedro	370.3	- 42 - 50 - 55 - 55 - 55 - 55 - 55 - 55 - 55
10	TAL	PULSES S	SEEN BY A	AMP PER SE	c	
TO	TAL	SUPPR	ESSIONS 1	PER SEC		
τυ'	TAL	INTER	ROGATIONS	PER SEC		
A1	RCR	AFT HEIG	HT ABOVE	GROUND (F	I)	
		ALR	CRAFT POS	SITION		15 17 18 18 19 20 20 22 22 22 23 23 23

		San Diego Landing and Take-off.
No.	of	Interrogations Received in 20 secs. (Tracked
		Interrogators Only).

		SCAN	MODE	NAME	PRF]		
Γ	Τ	NONE	А	F	437.6			0£f 3821 5903 5693 1231 5707
		10.9	4*2C	E	308.6	1274 501 501 441 399 267 181 220 181 220 177 165 165		Take
		3.77	4*12AC	D	224.6	69 95 72		73 32
ATORS		3,80	4*12AC	с	335.9	5555555 7 38 18 50		ជន្មន
OTHER INTERROGATORS		3.84	4#2AC	B	378.0	203 134 134 108 134 128 128 128 128 128 128 128 128 128 128		· · ·
INI		3.86	AC	Norton	273.9			
OTHER		9.8	12AC	Camp Pendleton	292.1	197 113 66 56 56 56 56 56 62		27 55 94 123 123 101
		5.6	4*12AC	٨	242.7	290 125 312 321 143 144 110 201	۵	522325775
l		11.2	4*12AC	San Diego	303.5	117 100 100 65 65 327 90 126 143 127	155	483 483 177 188 188 177 188 177 188 176 177 188 178 177 188 178 177 188 177 177
ł		12.02	2*2ACA	San Ciemente	334.9	56838844 58838844 58838844		2 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3
		9.67	1AC	San Nicolas	359.4	62 65 65		46 57 73 33
Γ		4.72	AAC	Long Beach	337.1			5 5 5
		4,67	MC	Miramar	350.0	251 151 164 165 165 165 165 165 165 165 165 165 165		88 - 7 25 123 88 88 - 7 25 123 88
s		6,00	AAC	Burbank	375.3			
FAA INTERROGATORS	RAL	4.67	AAC	El Toro	390.2	65		3 2 6 5
TERRO	TERMINAL	4.67	AAC	Ontario	450.2			
AA IN		4.65	AAC	LAXASR7	378.6			
Å		4.67	AAC	LAX	405.2			ç, Ç
	ENBOUTE	12.02	2464	Mt. Lagun#	330.2	525 447 457 457 457 457 457 457 457 457 45		89445888
	ENE ENE	12.00	2161	San Pedro	370.3	286362363		8 5 5 6
то	TOTAL PULSES SEEN BY AMP PER SEC			1483 1848 1519 1519 1559 1559 1559 1559 1559 155	310	2529 1553 1745 1745 1745 2120 2053 2053 1802		
TOTAL SUPPRESSIONS PER SEC					303 415 319 354 354 354 389 2538 243	۳ ۳	331 331 294 276 276 276	
TOTAL INTERROGATIONS PER SEC						90 90 92 92 92 92 92 92 92 92 92 92 92 92 92		554 83 83 84 84 84 421 421 273 84 361 361
AI	AIRCRAFT HEICHT ABOVE GROUND (FT)					5200 5200 5200 5200 5200 5200 5200 5200		
AIRCRAFT POSITION NO. SOCIETISTICS AND AREA AND AR								444444 44444 44444 44444 44444 44444 4444

12

100000-04

San Diego Landing and Take-off. Estimated Angle of Arrival (deg). (Tracked Interrogators Only).

		SCAN	MODE	NAME	PRF]		
Γ	Γ	NONE	A	F	437.6			315 315 315 308
ł		10.9	4*2C	E	308.6	185 208 221 225 258 258 239		Off
		3.77	4*12AC	D	224.6	217 213 223 223	Land	Take Off 209 205
OTHER INTERROGATORS		3.80	4 *12 AC	с	335.9	171 192 199 205 205 228 228 228 223 227 228	827	827 206 187 155
TERRO		3.84	4*2AC	B	378.0	184 207 207 207 207 207 207 207 207 252 252 253 253 253		
R ENT		3.86	AC	Norton	273.9			
OTHE	1	9.8	12AC	Camp Fendleton	292.1	340 318 293 293 293 293 293 293 293 323 323		338
		5.6	4#12AC	٨	242.7	186 207 227 224 223 224 223 224 224 253 253 253		236 236 221 213 213 213 213 213 200
		11.2	4*12AC	San Diego	303.5	131 157 157 184 219 238 258 258 258 256 264		259 133 157 158 168 168 168 161 161 152
ĺ		12.02	2*2ACA	San Clemente	334.9	272 261 276 276 278 257 257 257 257 257 257 257 257 257 257		279 281 267 265 265 264 261
ĺ		9,67	1AC	San Nicolas	359.4	267 258 258		262 253 263 262 262
Γ	IAL	4.72	AAC	Long Beach	337.1			324
		4.67	AAC	Miramar	350.0	111 116 332 321 322 323 323 323 323 323 328 328 328		11100 86 30 114 1120 96 53 114
		6.00	AAC	Burbank	375.3			
FAA INTERROGATORS		4.67	wc	El Toro	390.2	331 296		. 339 336 329
ERROC	TERNINAL	4,67	AAC	Outario	450.2			
A INT	Ì	4.65	AAC	LAXASR7	378.6			
FA		4.67	AAC	LAX	405.2			a ii
	Ë	12.02	2464 1	Mt. Laguna	330.2	104 91 93 93 79 50 50 72 100 100		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	ENROUTE	12.00	ZACA	San Pedro	370.3	307 307 308 308 308 308 308 308 308 308 308 308		317 322 322 318
TOTAL PULSES SEEN BY AMP PER SEC				C				
						I		
то	TOTAL INTERROGATIONS PER SEC					·	1	
AI	AIRCRAFT HEIGHT ABOVE GROUND (FT)						Ţ	
	AIRCRAFT POSITION					<u>38855355566688</u>	Ţ	6 5 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

13

ana araan marakan interna manan mahatan perinterangkan perinterangkan perinterangkan perinterangkan perinterang

San Largest Mainbeam	Diego Power		Take-off. (Tracked	Interrogators
		Only).		

		SCAN	MODE	NAME	PRF]	
ſ		NONE	A	F	437.6		11 15 15 15 15 15 15 15 15 15 15 15 15 1
		10.9	4*2C	E	308.6	La 43246664466	Take
		3.77	4*12AC	D	224.6	12 P P P	827 -67 -62
OTHER INTERROGATORS		3.80	4*12AC	с	335.9	-53 -61 -53 -53 -53 -53 -53 -53 -53 -53 -53 -53	2474
ERROC		3.84	4*2AC	B	378.0	2524245 345	
INT		3.86	AC	Norton	273.9		
OTHER		9.8	12AC	Camp Pendleton	292.1	လိုလိုမ်းမှ နိုမ် နိုင်ငံ	አዋይ ይይታ
		5.6	4*12AC	•	242.7	3 2 3 4 4 9 9 9 9	384343 4
1		11.2	4*12AC	San Diego	303.5	244455555555 244455555555 2455555555555	3 E 4 3 3 4 4 5 E
ł		12.02	2*2ACA	San Clemente	334.9	於녌攻於핞 혒 囊칍싑겋	24 15 15 15 15 15 15 15 15 15 15 15 15 15
		9.67	IAC	San Nicolas	359.4	1999 1997 1999	ង់ដំង់ដំ
Γ		4.72	AAC	Long Beach	337.1		-62
		4.67	A AC	Miramar	350.0	44 41 42 42 44 44 44 44 44 44 44 44 44 44 44	8444446
220		6.00	ANC	Burbank	375.3		
FAA INTERROGATORS	NAL	4.67	AAC	El Toro	390.2	-60 -60	87.57.88 7 4
INTER	TERMINAL	4.67	AAC	Onterio	450.2		
PAA		4.65	AAC	LAXASR7	378.6		
		4.67	AAC	LAX	405.2		85 9 1
	CUROUTE	12.02	ZACA	Mt. Laguna	330.2	- 443 - 444 - 445 - 445 - 457 - 457 - 457 - 545 - 545	22.2383.244
	ANE	12.00	2454 1	San Pedro	370.3	1999 1999 1999 1999 1999 1999 1999 199	-55 -55 -49
TOTAL PULSES SEEN BY AMF PER SEC					c		
TOTAL SUPPRESSIONS PER SEC				PER SEC			
TOTAL INTERROGATIONS PER SEC							
AI	AIRCRAFT HEIGHT ABOVE GROUND (PT)						
	ALRCRAFT POSITION					88888888888888888888888888888888888888	8 6 9 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

power for a given interrogator and aircraft position. For example (from Tables 1, 2, and 3) at position 8, the AMF received 152 interrogations in 20 seconds from San Pedro, arriving from the southwest (245 deg) with a maximum mainbeam power of -35 dBm (in a total environment of 140 interrogations, 776 suppressions, and 2767 pulses per sec).

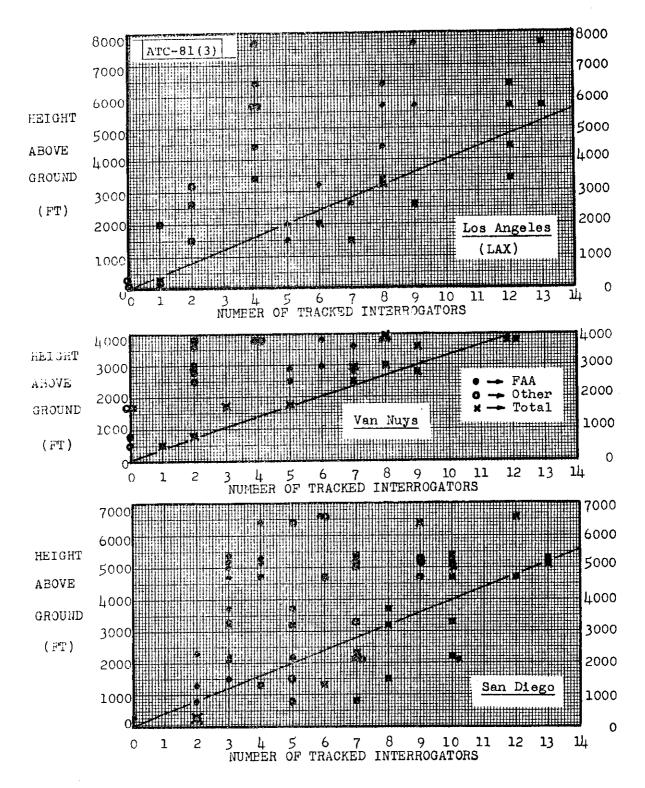
Although the P2 powers are not output by the analysis program directly, the P2 power may be estimated to have a power level approximately 20 dB below the mainbeam power. For the San Pedro example, the P2 power level would be about -55 dBm.

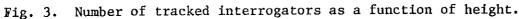
3.1 Interrogator Population

The Environment Tables answer Questions (1) and (2) of Section 1 (about the environment on 1030 MHz, and about its division between FAA and other interrogators) by counting columns with entries in them. This counting has been done in Table 10, which shows the number of interrogators and their types seen at each position, and the aircraft height at those positions.

Figure 3 presents plots of the corresponding three parts of Table 10 for LAX, Van Nuys, and San Diego, showing the number of different types of interrogators versus height (above ground).

3.2 Altitude Dependence


The plots of Figure 3 answer Question (3) of Section 1 (about the dependence of the environment upon altitude). Note that the FAA interrogators, which predominate in the LAX and Van Nuys areas, are less significant in the San Diego area.


Figure 4 presents another view of the height-type-number dependence. In this figure, landings have been separated from take-offs, and plotted as

AIRPORT	Alrcraft Position	Height Above (ft) Ground	FAA Interrogators	Other Interrogators	Total Interrogators	AIRPORT	Aircraft Position	Height Above (ft) Ground	FAA Interrogators	Other Interrogators	Total Interrogators
	1	100	l	0 2	1	ΣI	24	2800	7	2	9
	2	1500	5	2	7	SYUN	25	3800	6	2	8
	3	3200	6	2	8	VAN	26	3800	8	4	12
	2 3 4 5	4400	8	4	12		27	3800	8	4	12
		5700	8	4	12		28	5200	4	9	13
	6	6400	8	4	12		29	5300	4	9	13
LAX	7	6400	8	4	12		30	4700	3	9	12
	8	7700	9	4	13		31	5200	3	7	10
	9	5700	9	4	13		32	5000	3	7	10
	10	3400	8	4	12		33	3300	3	7	10
	12	2600	7	2	9		34	2200	3	7	10
	13	2000	5	1	6		35	2100	3	7	10
	14	300	1	0	1	8	36	1500	3	5	8
	15	3600	7	2	9	SAN. DIEGO	37	800	2	5	7
	16	3600	7	2	9	AN	38	300	0	2	2
	17	3000	6	2	8	S S	21	1300	2	4	-6
S S	18	2900	5	2	7		40	2300	2	5	7
	19	2500	5	2	7		41	3200	3	5	8
VAN NUYS	20	1700	3	0	3		42	3700	3	5	8
	21	800	2	0	2.		43	4700 51.00	4	6	10
	22	500	1	0	1		44 1 m	5400 (100	3	7	10
	23	1700	5	0	5		45	6400	4	5	9
				L	<u> </u>		46	6600	6	6	12

Number of Tracked Interrogators (FAA and Other) as a Function of Height Above Ground.

Table 10

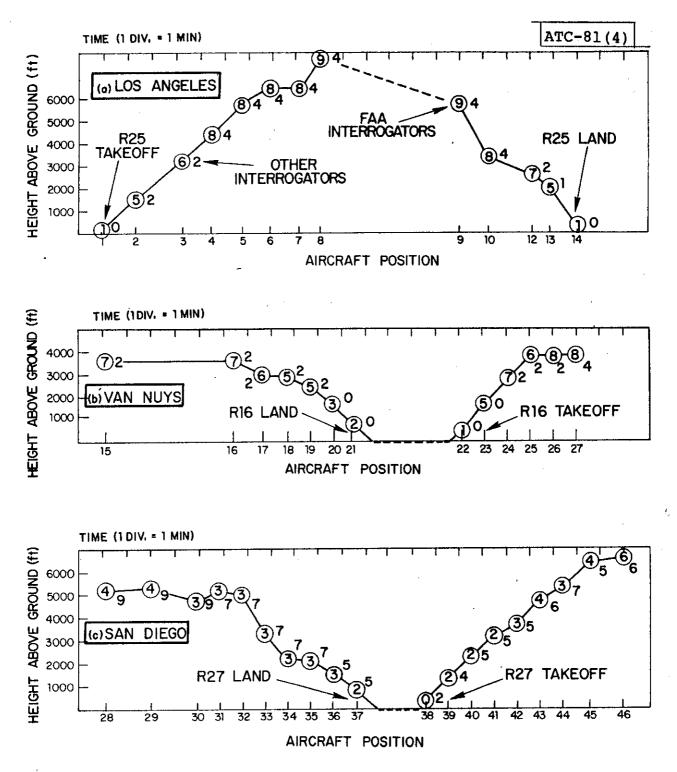


Fig. 4. Number of interrogators tracked during landings and take-offs vs altitude.

a function of time. For each position, a small circle centered at the proper height (above ground) contains the number of FAA interrogators which were tracked there. The number of other interrogators tracked at each altitude is written next to the circle.

3.3 P2 Pulse Tracking

Figure 5 presents data relevant to the problem of passive tracking of P2 pulses, posed in Question (4) of Section 1. Part (a) of the figure is a plot of the maximum power received from the FAA interrogators near LAX. The plotted values have been obtained from six selected columns of Table 3. Since the corresponding plot of P2 pulse power would be approximately 20 dB below the curves shown (as explained in paragraph 3.0) the figure can be used to answer Question (4) about the sufficiency of trackable P2 pulses for any assumed receiver threshold. Part (b) of Figure 5 is similar to Part (a), except that it refers to the San Diego area. Here selected values of Table 9 have been plotted.

4.0 ADDITIONAL RESULTS

4.1 ECAC File Adjustments

The AMF analysis program does not automatically associate interrogators of an area with the different PRFs detected and tracked by the program. This assignment of PRFs to real interrogators must be done manually. The usual method of doing this is to find the PRF in the ECAC Interrogator File nearest to the PRF tracked by the program, and then check the other parameters. When identification is made, the interrogator location (latitude and longitude)

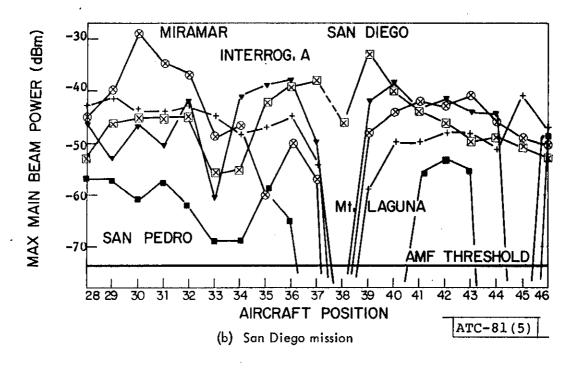


Fig. 5. Maximum power levels of received interrogations.

in the ECAC Interrogator File is further checked for consistency with the measured angle of arrival, measured mainbeam power, and number of interrogations received.

The identification process is often hampered by inaccuracies in the Interrogator File. Fourteen of the 20 PRF's tracked by the program have been identified with real interrogators (as indicated by the names in the Environment Tables) despite the fact that 9 of the 14 appeared in the Interrogator File with one or more parameters in need of adjustment (see Table 11).

4.2 Unidentified Interrogators

Unidentified interrogators (called A, B, C, D, E, and F in the Environment Tables) must be "located" entirely by the measured parameters given in the tables, most of all, by the angle of arrival. This procedure locates interrogators A, B, E (and, probably, C as well) somewhere southwest of the San Diego path, off the coast, perhaps 10 nm west of North Island. Interrogator D is probably much further off the coast, southwest (215 deg) of San Diego. The omni-directional interrogator F is somewhere northwest (315 deg) of San Diego, perhaps off the coast near Camp Pendleton.

4.3 Environment Table Notes

(a) The large number of interrogations per sec at positions 1 and 14 (see Table 1) results from the fact that these positions are just off the ground, over the runways at LAX where reflected suppressions combine into false Mode 1 and 2 interrogations.

(b) At positions 4 through 8, an omnidirectional interrogator on Mode 2, with a PRI of 4071 μ s followed by one of 20358 μ s, regularly, contri-

INTERROGATOR	PARAMETER OF	ECAC FILE	MEAS'D VALUE						
	DIFFERENCE	2-5-76	10-1-76						
San Pedro	RPM	6'	5						
Mt. Laguna	PRF	241	330.2						
Long Beach	PRF	415	337.1						
	MODE	A	AAC						
Burbank	RPM	15	10						
San Nicolas Is.	MODE	A	lac						
San Clemente Is.	PRF	300	334•9						
	MODE	A	4#2ACA						
	RPM	16	5						
San Diego	PRF	300	303.5						
	MODE	A	4*12AC						
	RPM	20	5.5						
Cp. Pendleton	PRF	295	292.1						
	MODE	A	12AC						
Norton AFB	PRF	275	273.9						
	MODE	A	AC						

AMF-Measured Interrogator Parameters at Variance with 2-5-76 ECAC File.

buted about 60 interrogations per sec. It seemed to be located just south of Long Beach. It is an interrogator on 4071 μ s (PRF = 221) which is on the air 2 times, and then off the air 4 times, repeatedly.

(c) At position 16 (see Table 4), the 330 interrogations per sec are mainly due to an interrogator on 320 PRF, to the southwest (mode interlace 1/2/A, scan period = 7.8 sec). Many sidelobe interrogations from this interrogator were received, partially because of the enhanced receiver sensitivity used at this one position (-80 dBm instead of the usual -74 dBm).

(d) At position 27, most of the 106 interrogations per sec come from an interrogator with an unstable PRI of $5052 \pm 2 \ \mu s$ interrogating on Mode 2, located somewhere to the west (about 960 interrogations in 20 sec).

(e) An omnidirectional interrogator on 100 PRF (Mode A) was observed from position 29 to position 36 of the San Diego mission. Many interrogations (1200 to 1800 in 20 sec) were received from it during positions 30 through 34. Its angles of arrival seem to place it on the coast between North Island and Imperial Beach.

(f) The excessive number of interrogations at position 39 (554 per sec) comes from another omnidirectional interrogator seen only at this one point. Its PRF (910 per sec) is unusually high. Its Mode A interrogations are coming from the southeast at -70 dBm. It might be located somewhere between Tijuana and Imperial Beach (about 800 interrogations in 20 sec).

(g) Some interrogations with irregular PRI have been seen during these three missions. An interrogator ("Z1") with a 26- μ s jitter in its PRI (8687 μ s followed by 8713 μ s, repeatedly) was seen through most

of the Van Nuys mission, contributing 2 to 3 interrogations per sec (mode interlace A/C, scan = 3.72 sec). Interrogator Z1 is presumably located just south of LAX.

(h) A second interrogator ("Z2") with highly irregular PRI
of period 9 (full period: 6810, 2831, 2831, 3051, 2831, 2831, 3881, 2831,
2831 µs) was noted through the first part of the San Diego mission (positions
28-40), contributing perhaps 7-8 interrogations per sec (Mode C, scan =
7.78 sec). Interrogator Z2 is probably on the coast south of Long Beach.

(i) Another interrogator ("Z3") with irregular PRI of period 7 (full period: 4107, 4107, 4107, 4107, 4117, 4900, 4094 μ s) was noted contributing 3 interrogations per sec during positions 24 - 27 of the Van Nuys flight (mode interlace 1/2/A/C, scan = 5.8 sec). Its interrogations were arriving from the southeast at a rather high level (-40 dBm). Interrogator Z3 might be located near Inglewood.

(j) Finally, a fourth interrogator ("Z4") with irregular PRI of period 7 (full period: 4607, 5692, 3354, 4143, 4916, 5107, 5108 μ s) was seen at positions 17 and 18. Interrogator Z4 contributed 2 to 3 interrogations per sec (mode interlace 1/2/A/C, scan = 5.87 sec) at a low power level (-70 dBm), arriving from the southeast.

5.0 CONCLUSIONS

The AMF measurements indicate a visible interrogator population increasing with height during normal landings and take-offs at the three selected LA area airports (see Table 10 and Figures 3 and 4). The number of FAA and other interrogators visible to the AMF increases rapidly with aircraft height

and then tends to become constant above an altitude of approximately 3000 ft. The actual number of interrogators seen and the FAA/other ratio are area dependent.

The behavior of FAA interrogators is generally predictable from the ECAC Interrogator File for the area, but other interrogators are either on or off according to time of day and day of the week, and a significant number of interrogators not included in the ECAC file are generally received. Although the total number of received interrogators is not exactly a linear function of altitude (see Fig. 3), a linear function does provide a first-order approxmation for altitudes up to about 6000 ft., where the rate is 2.5 interrogators per 1000 ft. for LAX and San Diego, and 3 interrogators per 1000 ft. for Van Nuys.